Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Genome Ed ; 5: 1094965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911238

RESUMEN

Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.

2.
Int J Biol Macromol ; 234: 123757, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805507

RESUMEN

Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.


Asunto(s)
Cicer , Cicer/genética , Cicer/metabolismo , Filogenia , Sequías , Fibrilinas/genética , Fibrilinas/metabolismo , Deshidratación/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
3.
Plant Cell Rep ; 40(11): 2081-2095, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34173047

RESUMEN

Proteases are ubiquitous in prokaryotes and eukaryotes. Plant proteases are key regulators of various physiological processes, including protein homeostasis, organelle development, senescence, seed germination, protein processing, environmental stress response, and programmed cell death. Proteases are involved in the breakdown of peptide bonds resulting in irreversible posttranslational modification of the protein. Proteases act as signaling molecules that specifically regulate cellular function by cleaving and triggering receptor molecules. Peptides derived from proteolysis regulate ROS signaling under oxidative stress in the plant. It degrades misfolded and abnormal proteins into amino acids to repair the cell damage and regulates the biological process in response to environmental stress. Proteases modulate the biogenesis of phytohormones which control plant growth, development, and environmental stresses. Protein homeostasis, the overall balance between protein synthesis and proteolysis, is required for plant growth and development. Abiotic and biotic stresses are major factors that negatively impact cellular survivability, biomass production, and reduced crop yield potentials. Therefore, the identification of various stress-responsive proteases and their molecular functions may elucidate valuable information for the development of stress-resilient crops with higher yield potentials. However, the understanding of molecular mechanisms of plant protease remains unexplored. This review provides an overview of proteases related to development, signaling, and growth regulation to acclimatize environmental stress in plants.


Asunto(s)
Péptido Hidrolasas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Productos Agrícolas/fisiología , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA