Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Physiol Biochem ; 210: 108590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574692

RESUMEN

The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.


Asunto(s)
Pelargonium , Proteínas de Plantas , Terpenos , Terpenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pelargonium/metabolismo , Pelargonium/genética , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Tricomas/metabolismo , Aceites Volátiles/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675270

RESUMEN

Pod borer Helicoverpa armigera, a polyphagus herbivorous pest, tremendously incurs crop damage in economically important crops. This necessitates the identification and utility of novel genes for the control of the herbivore. The present study deals with the characterization of a flavonoid 3'5' hydroxylase_2 (F3'5'H_2) from a pigeonpea wild relative Cajanus platycarpus, possessing a robust chemical resistance response to H. armigera. Though F3'5'H_2 displayed a dynamic expression pattern in both C. platycarpus (Cp) and the cultivated pigeonpea, Cajanus cajan (Cc) during continued herbivory, CpF3'5'H_2 showed a 4.6-fold increase vis a vis 3-fold in CcF3'5'H_2. Despite similar gene copy numbers in the two Cajanus spp., interesting genic and promoter sequence changes highlighted the stress responsiveness of CpF3'5'H_2. The relevance of CpF3'5'H_2 in H. armigera resistance was further validated in CpF3'5'H_2-overexpressed transgenic tobacco based on reduced leaf damage and increased larval mortality through an in vitro bioassay. As exciting maiden clues, CpF3'5'H_2 deterred herbivory in transgenic tobacco by increasing total flavonoids, polyphenols and reactive oxygen species (ROS) scavenging capacity. To the best of our knowledge, this is a maiden attempt ascertaining the role of F3'5'H_2 gene in the management of H. armigera. These interesting leads suggest the potential of this pivotal branch-point gene in biotic stress management programs.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Cajanus/metabolismo , Nicotiana/genética , Polifenoles/farmacología , Polifenoles/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Oxigenasas de Función Mixta/metabolismo , Mariposas Nocturnas/genética , Animales Modificados Genéticamente
3.
Int J Biol Macromol ; 231: 123325, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36681223

RESUMEN

Control of pod borer Helicoverpa armigera, a notorious polyphagous pest requires paramount attention with focus on environment-friendly management approaches. Overproduction of catechins (epigallocatechin-EGC and epicatechin-3-gallate-EC3G) in the pod borer-resistant pigeonpea wild relative, Cajanus platycarpus during continued herbivory prodded us to assess their underlying molecular effect on H. armigera. Significant reduction in larval and pupal growth parameters was observed when reared on artificial diet incorporated with 100 ppm EC3G vis a vis 100 ppm EGC and EGC + EC3G. Comparative RNAseq analyses of larvae that fed on normal and EC3G-incorporated diet revealed 62 differentially expressed genes dominated by detoxification and lipid metabolism. While lipase and fatty acid-binding protein 2-like were up-regulated, delta9-FADS-like involved in fatty acid synthesis was downregulated, indicating effect of EC3G on fat metabolism. Validation of RNAseq data by qPCR; midgut glutathione-S-transferase and esterase assays depicted increased lipolysis and reduced lipogenesis in EC3G-fed larvae. Additionally, differential accumulation of stearic acid and oleic acid in EC3G-fed and control larvae/adults ascertained perturbation in lipogenesis. Supported by modelling, molecular docking and simulations, we demonstrate the possible involvement of the insect adipokinetic hormone receptor (AKHR) in the EC3G-mediated response. The study demonstrates plant specialized metabolite EC3G as a potential candidate for H. armigera control.


Asunto(s)
Catequina , Mariposas Nocturnas , Animales , Catequina/metabolismo , Metabolismo de los Lípidos , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Larva , Plantas/química
4.
Planta ; 256(6): 110, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350410

RESUMEN

MAIN CONCLUSION: Several cis-elements including Myb-binding motifs together confer glandular trichome specificity as revealed from heterologous expression and analysis of menthol biosynthesis pathway gene promoters. Glandular Trichomes (GTs) are result of division of epidermal cells that produce diverse metabolites. Species of mint family are important for their essential oil containing many high-value terpenoids, biosynthesized and stored in these GTs. Hence, GTs constitute attractive targets for metabolic engineering and GT-specific promoters are important. In this investigation, the upstream regions of the Mentha × piperita menthol biosynthetic pathway genes (-)-limonene synthase, (-)-P450 limonene-3- hydroxylase, (-)-trans-isopiperitenol dehydrogenase, (-)-Isopiperitenone reductase, ( +)-Pulegone reductase, (-)-Menthone reductase/ (-)-Menthol dehydrogenase and a branched pathway gene ( +)-menthofuran synthase were isolated and characterized. These fragments, fused to ß-glucuronidase (GUS) reporter gene of pBI101 binary vector, are able to drive high level gene expression in transgenic tobacco trichomes with strong signals in GTs, except for (-)-Isopiperitenone reductase. The GT-enriched tissue from transformed plants were analysed for GUS enzyme activity and RNA expression which correlates the GUS staining. To characterize the cis-elements responsible for GT-specific expression, a series of 5' deletion constructs for MpPLS and MpPMFS were cloned and analysed in stable transgenic tobacco lines. The specificity of trichome expression was located to -  797 to-  598 bp sequence for (-)-limonene synthase and-  629 to -   530 bp for ( +)-menthofuran synthase promoters containing specific Myb-binding motifs in addition to other unique motifs described for developmental regulation without any defined pattern. All other pathway promoters also recruits specific but different Myb factors as indicated by this analysis.


Asunto(s)
Mentha piperita , Tricomas , Tricomas/genética , Tricomas/metabolismo , Mentha piperita/genética , Mentha piperita/metabolismo , Mentol/metabolismo , Monoterpenos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
5.
Cells ; 11(21)2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359857

RESUMEN

MIRNAs are small non-coding RNAs that play important roles in a wide range of biological processes in plant growth and development. MIR397 (involved in drought, low temperature, and nitrogen and copper (Cu) starvation) and MIR408 (differentially expressed in response to environmental stresses such as copper, light, mechanical stress, dehydration, cold, reactive oxygen species, and drought) belong to conserved MIRNA families that either negatively or positively regulate their target genes. In the present study, we identified the homologs of MIR397 and MIR408 in Oryza sativa and its six wild progenitors, three non-Oryza species, and one dicot species. We analyzed the 100 kb segments harboring MIRNA homologs from 11 genomes to obtain a comprehensive view of their community evolution around these loci in the farthest (distant) relatives of rice. Our study showed that mature MIR397 and MIR408 were highly conserved among all Oryza species. Comparative genomics analyses also revealed that the microsynteny of the 100 kb region surrounding MIRNAs was only conserved in Oryza spp.; disrupted in Sorghum, maize, and wheat; and completely lost in Arabidopsis. There were deletions, rearrangements, and translocations within the 100 kb segments in Oryza spp., but the overall microsynteny of the region was maintained. The phylogenetic analyses of the precursor regions of all MIRNAs under study revealed a bimodal clade of common origin. This comparative analysis of miRNA involved in abiotic stress tolerance in plants provides a powerful tool for future Oryza research. Crop wild relatives (CWRs) offer multiple traits with potential to decrease the amount of yield loss owing to biotic and abiotic stresses. Using a comparative genomics approach, the exploration of CWRs as a source of tolerance to these stresses by understanding their evolution can be further used to leverage their yield potential.


Asunto(s)
Arabidopsis , MicroARNs , Oryza , Arabidopsis/genética , Cobre , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Oryza/genética , Filogenia
6.
Plants (Basel) ; 11(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35890507

RESUMEN

To understand the altered developmental changes and associated gene expression in inter-genomic combinations, a study was planned in two diverse yet closely related species of Ocimum, targeting their hybrid F1 and amphidiploids. The existing developmental variations between F1 and amphidiploids was analyzed through phenotypical and anatomical assessments. The absence of 8330 transcripts of F1 in amphidiploids and the exclusive presence of two transcripts related to WNK lysine-deficient protein kinase and geranylgeranyl transferase type-2 subunit beta 1-like proteins in amphidiploids provided a set of genes to compare the suppressed and activated functions between F1 and amphidiploids. The estimation of eugenol and methyleugenol, flavonoid, lignin and chlorophyll content was correlated with the average FPKM and differential gene expression values and further validated through qRT-PCR. Differentially expressed genes of stomatal patterning and development explained the higher density of stomata in F1 and the larger size of stomata in amphidiploids. Gene expression study of several transcription factors putatively involved in the growth and developmental processes of plants clearly amalgamates the transcriptome data linking the phenotypic differences in F1 and amphidiploids. This investigation describes the influence of interspecific hybridization on genes and transcription factors leading to developmental changes and alleviation of intergenomic instability in amphidiploids.

7.
Toxins (Basel) ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878193

RESUMEN

Management of pod borer, Helicoverpa armigera in pigeonpea (Cajanus cajan L.), an important legume crop, has been a pertinent endeavor globally. As with other crops, wild relatives of pigeonpea are bestowed with various resistance traits that include the ability to deter the H. armigera. Understanding the molecular basis of pod borer resistance could provide useful leads for the management of this notorious herbivore. Earlier studies by our group in deciphering the resistance response to herbivory through multiomics approaches in the pigeonpea wild relative, Cajanus platycarpus, divulged the involvement of the flavonoid biosynthesis pathway, speculating an active chemical response of the wild relative to herbivory. The present study is a deeper understanding of the chemical basis of pod borer (H. armigera) resistance in, C. platycarpus, with focus on the flavonoid biosynthesis pathway. To substantiate, quantification of transcripts in H. armigera-challenged C. platycarpus (8 h, 24 h, 48 h, 96 h) showed dynamic upregulation (up to 11-fold) of pivotal pathway genes such as chalcone synthase, dihydroflavonol-4-reductase, flavonoid-3'5'-hydroxylase, flavonol synthase, leucoanthocyanidin reductase, and anthocyanidin synthase. Targeted LC-MS analyses demonstrated a concomitant increase (up to 4-fold) in naringenin, kaempferol, quercetin, delphinidin, cyanidin, epigallocatechin, and epicatechin-3-gallate. Interestingly, H. armigera diet overlaid with the over-produced flavonoids (100 ppm) showed deleterious effects on growth leading to a prolonged larval period demonstrating noteworthy coherence between over-accumulation of pathway transcripts/metabolites. The study depicts novel evidence for the directed metabolic reprogramming of the flavonoid biosynthesis pathway in the wild relative to pod borer; plant metabolic potential is worth exploiting for pest management.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Cajanus/química , Cajanus/genética , Flavonoides , Herbivoria , Larva , Mariposas Nocturnas/fisiología
8.
Sci Rep ; 10(1): 5234, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251340

RESUMEN

Ocimum is one of the most revered medicinally useful plants which have various species. Each of the species is distinct in terms of metabolite composition as well as the medicinal property. Some basil types are used more often as an aromatic and flavoring ingredient. It would be informative to know relatedness among the species which though belong to the same genera while exclusively different in terms of metabolic composition and the operating pathways. In the present investigation the similar effort has been made in order to differentiate three commonly occurring Ocimum species having the high medicinal value, these are Ocimum sanctum, O. gratissimum and O. kilimandscharicum. The parameters for the comparative analysis of these three Ocimum species comprised of temporal changes in number leaf trichomes, essential oil composition, phenylpropanoid pathway genes expression and the activity of important enzymes. O. gratissimum was found to be richest in phenylpropanoid accumulation as well as their gene expression when compared to O. sanctum while O. kilimandscharicum was found to be accumulating terpenoid. In order to get an overview of this qualitative and quantitative regulation of terpenes and phenylpropenes, the expression pattern of some important transcription factors involved in secondary metabolism were also studied.


Asunto(s)
Metabolómica/métodos , Ocimum/metabolismo , Aceites Volátiles/química , Proteínas de Plantas/genética , Plantas Medicinales/metabolismo , Antocianinas/análisis , Antocianinas/metabolismo , Clorofila/análisis , Clorofila/metabolismo , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ocimum/química , Ocimum/genética , Aceites Volátiles/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinales/química , Metabolismo Secundario , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/química , Tricomas/metabolismo
9.
Microbiol Resour Announc ; 8(31)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371541

RESUMEN

Azospirillum brasilense is used worldwide as a plant growth-promoting inoculant for agricultural crops. To understand how the genomes of Indian strains of A. brasilense compare with their South American counterparts, we determined the whole-genome sequences of four strains of A. brasilense isolated from the rhizosphere of grasses from India.

10.
PLoS One ; 14(2): e0210903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30726239

RESUMEN

Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes' expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.


Asunto(s)
Aclimatación/fisiología , Metaboloma/fisiología , Ocimum sanctum/fisiología , Estrés Fisiológico/fisiología , Sequías , Inundaciones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos
11.
Plant Cell Physiol ; 60(3): 672-686, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541044

RESUMEN

The medicinal properties of Ashwagandha (Withania somnifera) are accredited to a group of compounds called withanolides. 24-Methylene cholesterol is the intermediate for sterol biosynthesis and a proposed precursor of withanolide biogenesis. However, conversion of 24-methylene cholesterol to withaferin A and other withanolides has not yet been biochemically dissected. Hence, in an effort to fill this gap, an important gene, encoding S-adenosyl l-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1), involved in the first committed step of sterol biosynthesis, from W. somnifera was targeted in the present study. Though SMT1 has been characterized in model plants such as Nicotiana tabacum and Arabidopsis thaliana, its functional role in phytosterol and withanolide biosynthesis was demonstrated for the first time in W. somnifera. Since SMT1 acts at many steps preceding the withanolide precursor, the impact of this gene in channeling of metabolites for withanolide biosynthesis and its regulatory nature was illustrated by suppressing the gene in W. somnifera via the RNA interference (RNAi) approach. Interestingly, down-regulation of SMT1 in W. somnifera led to reduced levels of campesterol, sitosterol and stigmasterol, with an increase of cholesterol content in the transgenic RNAi lines. In contrast, SMT1 overexpression in transgenic N. tabacum enhanced the level of all phytosterols except cholesterol, which was not affected. The results established that SMT1 plays a crucial role in W. somnifera withanolide biosynthesis predominantly through the campesterol and stigmasterol routes.


Asunto(s)
Fitosteroles/metabolismo , Extractos Vegetales/metabolismo , Withania/metabolismo , Witanólidos/metabolismo , Interferencia de ARN
12.
PLoS One ; 13(11): e0207097, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30444870

RESUMEN

Holy basil (Ocimum sanctum L.) and sweet basil (Ocimum basilicum L.) are the most commonly grown basil species in India for essential oil production and biosynthesis of potentially volatile and non-volatile phytomolecules with commercial significance. The aroma, flavor and pharmaceutical value of Ocimum species is a significance of its essential oil, which contains most of the monoterpenes and sesquiterpenes. A large number of plants have been studied for characterization and identification of terpene synthase genes, involved in terpenoids biosynthesis. The goal of this study is to discover and identify the putative functional terpene synthase genes in O. sanctum. HMMER search was performed by using a set of 13 well sequenced and annotated plant genomes including the newly sequenced genome of O. sanctum with Pfam-A database locally, using HMMER 3.0 hmmsearch for the two Pfam domains (PF01397 and PF03936). Using this search method 81 putative terpene synthases genes (OsaTPS) were identified in O. sanctum; the study further reveals 47 OsaTPS were putatively functional genes, 19 partial OsaTPS, and 15 OsaTPS as probably pseudogenes. All these identified OsaTPS genes were compared with other plant species, and phylogenetic analysis reveals the subfamily classification of OsaTPS in TPS-a, -b, -c, -e, -f and TPS-g subfamilies clusters. This genome-wide identification of OsaTPS genes, their phylogenetic analysis and secondary metabolite pathway mapping predictions together provide a comprehensive understanding of the TPS gene family in Ocimum sanctum and offer opportunities for the characterization and functional validation of numbers of terpene synthase genes.


Asunto(s)
Transferasas Alquil y Aril/genética , Ocimum sanctum/enzimología , Ocimum sanctum/genética , Proteínas de Plantas/genética , Simulación por Computador , Secuencia Conservada , Exones , Genoma de Planta , Intrones , Modelos Genéticos , Filogenia
13.
Sci Rep ; 8(1): 3423, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467423

RESUMEN

Artemisia annua is known to be the source of artemisinin worldwide which is an antimalarial compound but is synthesised in very limited amount in the plant. Most research laid emphasis on the methods of enhancing artemisinin but our study has been planned in a way that it may simultaneously address two problems encountered by the plant. Firstly, to know the effect on the artemisinin content in the era of climate change because the secondary metabolites tend to increase under stress. Secondly, to identify some of the stress responsive genes that could help in stress tolerance of the plant under abiotic stress. Hence, the A. annua plants were subjected to four abiotic stresses (salt, cold, drought and water-logging) and it was observed that the artemisinin content increased in all the stress conditions except drought. Next, in order to identify the stress responsive genes, the transcriptome sequencing of the plants under stress was carried out resulting in 89,362 transcripts for control and 81,328, 76,337, 90,470 and 96,493 transcripts for salt, cold, drought, and water logging stresses. This investigation provides new insights for functional studies of genes involved in multiple abiotic stresses and potential candidate genes for multiple stress tolerance in A. annua.


Asunto(s)
Artemisia annua/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Artemisia annua/fisiología , Respuesta al Choque por Frío , Sequías , Proteínas de Plantas/genética
14.
Physiol Plant ; 160(2): 128-141, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28188954

RESUMEN

The genes involved in menthol biosynthesis are reported earlier in Mentha × piperita. But the information on these genes is not available in Mentha arvensis. To bridge the gap in knowledge on differential biosynthesis of monoterpenes leading to compositional variation in the essential oil of these species, a comparative transcriptome analysis of the glandular trichome (GT) was carried out. In addition to the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathway genes, about 210 and 196 different terpene synthases (TPSs) transcripts were identified from annotation in M. arvensis and M. × piperita, respectively, and correlated to several monoterpenes present in the essential oil. Six isoforms of (-)-menthol dehydrogenases (MD), the last enzyme of the menthol biosynthetic pathway, were identified, cloned and characterized from the transcriptome data (three from each species). Varied expression levels and differential enzyme kinetics of these isoforms indicated the nature and composition of the product, as these isoforms generate both (-)-menthol and (+)-neomenthol from (-)-menthone and converts (-)-menthol to (-)-menthone in the reverse reaction, and hence together determine the quantity of (-)-menthol in the essential oil in these two species. Several genes for high value minor monoterpenes could also be identified from the transcriptome data.


Asunto(s)
Mentha/metabolismo , Mentol/metabolismo , Tricomas/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Regulación de la Expresión Génica de las Plantas , Mentha/enzimología , Mentha/genética , Ácido Mevalónico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tricomas/enzimología , Tricomas/genética
15.
Protoplasma ; 254(1): 389-399, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26971099

RESUMEN

The medicinal plant Withania somnifera is researched extensively to increase the quantity of withanolides and specifically withaferin A, which finds implications in many pharmacological activities. Due to insufficient knowledge on biosynthesis and unacceptability of transgenic approach, it is preferred to follow alternative physiological methods to increase the yield of withanolides. Prior use of elicitors like salicylic acid, methyl jasmonate, fungal extracts, and even mechanical wounding have shown to increase the withanolide biosynthesis with limited success; however, the commercial viability and logistics of application are debatable. In this investigation, we tested the simple nitrogeneous fertilizers pertaining to the enhancement of withaferin A biosynthesis. Application of ammonium sulfate improved the sterol contents required for the withanolide biosynthesis and correlated to higher expression of pathway genes like FPPS, SMT1, SMT2, SMO1, SMO2, and ODM. Increased expression of a gene homologous to allene oxide cyclase, crucial in jasmonic acid biosynthetic pathway, suggested the involvement of jasmonate signaling. High levels of WRKY gene transcripts indicated transcriptional regulation of the pathway genes. Increase in transcript level could be correlated with a corresponding increase in the protein levels for WsSMT1 and WsWRKY1. The withaferin A increase was also demonstrated in the potted plants growing in the glasshouse and in the open field. These results implicated simple physiological management of nitrogen fertilizer signal to improve the yield of secondary metabolite through probable involvement of jasmonate signal and WRKY transcription factor for the first time, in W. somnifera besides improving the foliage.


Asunto(s)
Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Nitrógeno/farmacología , Oxilipinas/metabolismo , Esteroles/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Withania/genética , Witanólidos/metabolismo , Sulfato de Amonio/farmacología , Vías Biosintéticas/efectos de los fármacos , Dimetilsulfóxido/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Fósforo/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potasio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Urea/farmacología , Withania/efectos de los fármacos
16.
Sci Rep ; 6: 26458, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27220407

RESUMEN

Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.


Asunto(s)
Artemisia annua/enzimología , Artemisininas/metabolismo , Proteínas de Plantas/genética , Transcinamato 4-Monooxigenasa/genética , Artemisia annua/genética , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Estrés Fisiológico , Transcinamato 4-Monooxigenasa/metabolismo
17.
Mol Biol Rep ; 42(9): 1431-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26311154

RESUMEN

3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica. Sequence analysis indicated that the cDNA was of 1965 bp, which had an open reading frame of 1617 bp and encoded a protein containing 539 amino-acids with a mol wt of 57.9 kDa. A BLASTp search against non-redundant (nr) protein sequence showed that C. asiatica HMGR (CaHMGR) has 65-81% identity with HMGRs from different plant species and multi-alignment comparison analysis showed the presence of two motif each corresponding to HMG-CoA-binding and NADP(H)-binding. The Conserved Domain Database analysis predicted that CaHMGR belongs to Class I hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. Three-dimensional modeling confirmed the novelty of CaHMGR with a spatial structure similar to Homo sapiens (PDB id: 1IDQ8_A). Tissue Expression analysis indicates that CaHMGR is ubiquitous albeit differentially expressed among different tissues analysed, Strong expression was recorded in the nodes and leaves and low in the roots. The present investigation confirmed that nodes are vital to terpenoid synthesis in C. asiatica. Thus, the cloning of full length CDS, characterization and structure-function analysis of HMGR gene in Centella facilitate to understand the HMGR's functions and regulatory mechanisms involved in mevalonate pathway in C. asiatica at genetic level.


Asunto(s)
Centella/enzimología , Hidroximetilglutaril-CoA Reductasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Centella/genética , Clonación Molecular , Expresión Génica , Hidroximetilglutaril-CoA Reductasas/aislamiento & purificación , Hidroximetilglutaril-CoA Reductasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Conformación Proteica , Alineación de Secuencia
18.
BMC Genomics ; 16: 413, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26017011

RESUMEN

BACKGROUND: Ocimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition of medicine as well as culture around the world, and hence is known as "Holy basil" in India. This plant is mentioned in the ancient texts of Ayurveda as an "elixir of life" (life saving) herb and worshipped for over 3000 years due to its healing properties. Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components. With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms. RESULTS: The saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp, turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active molecules. CONCLUSION: The genome sequence and annotation of O. sanctum provides new insights into the function of genes and the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining biosynthetic pathways for important metabolites in related species.


Asunto(s)
Genoma de Planta , Ocimum/genética , Proteínas de Plantas/genética , Genoma del Cloroplasto , Medicina Ayurvédica , Repeticiones de Microsatélite , Ocimum/química , Filogenia , Propanoles/química , Análisis de Secuencia de ADN
19.
Plant Biotechnol J ; 13(9): 1287-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25809293

RESUMEN

Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (ß-amyrin synthase) and ß-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/fisiología , Estrés Fisiológico/genética , Withania/genética , Witanólidos/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Silenciador del Gen , Genes de Plantas/genética , Genes de Plantas/fisiología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Oxidorreductasas/genética , Oxidorreductasas/fisiología , Hojas de la Planta/metabolismo , Estrés Fisiológico/fisiología , Withania/enzimología , Withania/metabolismo , Withania/fisiología
20.
Parasitol Int ; 64(4): 36-42, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25597695

RESUMEN

Visceral leishmaniasis (VL) is a major fatal disease prevalent in North-East India, caused by a protozoan parasite Leishmania donovani. The parasite multiplies and thrives inside mammalian macrophages and is transmitted by the bite of the sandfly. Due to the unsatisfactory treatment measures, increasing drug resistance and the advent of HIV-Leishmania co-infection there has been an urgent need to develop novel drug/vaccine targets against VL. Target identification is the key step in drug discovery and proteomics seems to be a suitable strategy for it due to the availability of Leishmania major, Leishmania infantum, Leishmania braziliensis, Leishmania donovani, Leishmania mexicana and Leishmania tarentolae genome sequence. Since, majority of proteome analyses of Leishmania have, so far, been performed on whole-cell extracts; this study is dealing with the sub-proteome analysis of the membrane-enriched protein (MEP) fractions of L. donovani. The analysis of 95 protein spots of the MEPs from two dimensional (2-D) gel image through matrix asserted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) endorsed the identification of various relevant functional proteins. Out of 95 the MEP spots 72 have been identified and were classified on the basis of their biological function. Several proteins of unknown function that belong to different classes like cell signaling, transmembrane receptors, and transporters have been identified which could be the new potential therapeutic targets against VL in future. The proteome array of the MEPs contributes to further elucidation of the biological system of L. donovani as well as host-parasite relationships which may be further investigated for their crucial biological role in L. donovani for disease management.


Asunto(s)
Leishmania donovani/química , Leishmania donovani/genética , Proteínas de la Membrana/análisis , Proteoma/análisis , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/aislamiento & purificación , Proteómica , Proteínas Protozoarias/análisis , Proteínas Protozoarias/química , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA