Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Clin Microbiol ; : e0052524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888304

RESUMEN

Candida auris is a multidrug-resistant fungal pathogen with a propensity to colonize humans and persist on environmental surfaces. C. auris invasive fungal disease is being increasingly identified in acute and long-term care settings. We have developed a prototype cartridge-based C. auris surveillance assay (CaurisSurV cartridge; "research use only") that includes integrated sample processing and nucleic acid amplification to detect C. auris from surveillance skin swabs in the GeneXpert instrument and is designed for point-of-care use. The assay limit of detection (LoD) in the skin swab matrix was 10.5 and 14.8 CFU/mL for non-aggregative (AR0388) and aggregative (AR0382) strains of C. auris, respectively. All five known clades of C. auris were detected at 2-3-5× (31.5-52.5 CFU/mL) the LoD. The assay was validated using a total of 85 clinical swab samples banked at two different institutions (University of California Los Angeles, CA and Wadsworth Center, NY). Compared to culture, sensitivity was 96.8% (30/31) and 100% (10/10) in the UCLA and Wadsworth cohorts, respectively, providing a combined sensitivity of 97.5% (40/41), and compared to PCR, the combined sensitivity was 92% (46/50). Specificity was 100% with both clinical (C. auris negative matrix, N = 31) and analytical (non-C. auris strains, N = 32) samples. An additional blinded study with N = 60 samples from Wadsworth Center, NY yielded 97% (29/30) sensitivity and 100% (28/28) specificity. We have developed a completely integrated, sensitive, specific, and 58-min prototype test, which can be used for routine surveillance of C. auris and might help prevent colonization and outbreaks in acute and chronic healthcare settings. IMPORTANCE: This study has the potential to offer a better solution to healthcare providers at hospitals and long-term care facilities in their ongoing efforts for effective and timely control of Candida auris infection and hence quicker response for any potential future outbreaks.

3.
Microorganisms ; 11(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894195

RESUMEN

The global rise of drug resistant tuberculosis has highlighted the need for improved diagnostic technologies that provide rapid and reliable drug resistance results. Here, we develop and validate a whole genome sequencing (WGS)-based test for identification of mycobacterium tuberculosis complex (MTB) drug resistance to rifampin, isoniazid, pyrazinamide, ethambutol, and streptomycin. Through comparative analysis of drug resistance results from WGS-based testing and phenotypic drug susceptibility testing (DST) of 38 clinical MTB isolates from patients receiving care in Los Angeles, CA, we found an overall concordance between methods of 97.4% with equivalent performance across culture media. Critically, prospective analysis of 11 isolates showed that WGS-based testing provides results an average of 36 days faster than phenotypic culture-based methods. We showcase the additional benefits of WGS data by investigating a suspected laboratory contamination event and using phylogenetic analysis to search for cryptic local transmission, finding no evidence of community spread amongst our patient population in the past six years. WGS-based testing for MTB drug resistance has the potential to greatly improve diagnosis of drug resistant MTB by accelerating turnaround time while maintaining accuracy and providing additional benefits for infection control, lab safety, and public health applications.

4.
J Microbiol Methods ; 208: 106726, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120137

RESUMEN

Whole genome sequencing (WGS) of Mycobacterium avium complex (MAC) isolates in the clinical laboratory setting allows for rapid and reliable subspecies identification of a closely related complex of human pathogens. We developed a bioinformatics pipeline for accurate subspecies identification and tested 74 clinical MAC isolates from various anatomical sites. We demonstrate that reliable subspecies level identification of these common and clinically significant MAC isolates, including M. avium subsp. hominissuis (most dominant in causing lower respiratory tract infections in our cohort), M. avium subsp. avium, M. intracellulare subsp. intracellulare, and M. intracellulare subsp. chimaera, can be achieved by analysis of only two marker genes (rpoB and groEL/hsp65). We then explored the relationship between these subspecies and anatomical site of infection. Further, we conducted an in silico analysis and showed our algorithm also performed well for M. avium subsp. paratuberculosis but failed to consistently identify M. avium subsp. silvaticum and M. intracellulare subsp. yongonense, likely due to a lack of available reference genome sequences; all the 3 subspecies were not found in our clinical isolates and rarely reported to cause human infections. Accurate MAC subspecies identification may provide the tool and opportunity for better understanding of the disease-subspecies dynamics in MAC infections.


Asunto(s)
Infección por Mycobacterium avium-intracellulare , Paratuberculosis , Animales , Humanos , Complejo Mycobacterium avium/genética , Mycobacterium avium/genética , Infección por Mycobacterium avium-intracellulare/diagnóstico , Infección por Mycobacterium avium-intracellulare/microbiología , Secuenciación Completa del Genoma
5.
Clin Infect Dis ; 76(5): 850-860, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36268576

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS: All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥45 days after an initial positive test, with both tests between 14 March and 30 December 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS: Among 1569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present and was successful for 14/65 (22%) subjects. Six subjects had genomically supported reinfection, and 8 subjects had genomically supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically supported reinfections. CONCLUSIONS: Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , Reinfección/diagnóstico , Estudios Retrospectivos , SARS-CoV-2/genética , ARN
6.
Nat Med ; 28(5): 1083-1094, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35130561

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Gripe Humana , COVID-19/diagnóstico , Humanos , Microfluídica , SARS-CoV-2/genética
7.
Clin Infect Dis ; 74(7): 1275-1278, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363462

RESUMEN

The impact of coronavirus disease 2019 vaccination on viral characteristics of breakthrough infections is unknown. In this prospective cohort study, incidence of severe acute respiratory syndrome coronavirus 2 infection decreased following vaccination. Although asymptomatic positive tests were observed following vaccination, the higher cycle thresholds, repeat negative tests, and inability to culture virus raise questions about their clinical significance.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Personal de Salud , Humanos , Incidencia , Estudios Prospectivos , SARS-CoV-2 , Vacunación
8.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907347

RESUMEN

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Asunto(s)
Cartilla de ADN/normas , SARS-CoV-2/genética , Análisis de Secuencia/normas , COVID-19/diagnóstico , Cartilla de ADN/síntesis química , Genoma Viral/genética , Humanos , Control de Calidad , ARN Viral/genética , Reproducibilidad de los Resultados , Análisis de Secuencia/métodos , Secuenciación Completa del Genoma , Flujo de Trabajo
9.
J Neurol Sci ; 430: 120023, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34678659

RESUMEN

OBJECTIVE: Little is known about CSF profiles in patients with acute COVID-19 infection and neurological symptoms. Here, CSF was tested for SARS-CoV-2 RNA and inflammatory cytokines and chemokines and compared to controls and patients with known neurotropic pathogens. METHODS: CSF from twenty-seven consecutive patients with COVID-19 and neurological symptoms was assayed for SARS-CoV-2 RNA using quantitative reverse transcription PCR (RT-qPCR) and unbiased metagenomic sequencing. Assays for blood brain barrier (BBB) breakdown (CSF:serum albumin ratio (Q-Alb)), and proinflammatory cytokines and chemokines (IL-6, IL-8, IL-15, IL-16, monocyte chemoattractant protein -1 (MCP-1) and monocyte inhibitory protein - 1ß (MIP-1ß)) were performed in 23 patients and compared to CSF from patients with HIV-1 (16 virally suppressed, 5 unsuppressed), West Nile virus (WNV) (n = 4) and 16 healthy controls (HC). RESULTS: Median CSF cell count for COVID-19 patients was 1 white blood cell/µL; two patients were infected with a second pathogen (Neisseria, Cryptococcus neoformans). No CSF samples had detectable SARS-CoV-2 RNA by either detection method. In patients with COVID-19 only, CSF IL-6, IL-8, IL-15, and MIP-1ß levels were higher than HC and suppressed HIV (corrected-p < 0.05). MCP-1 and MIP-1ß levels were higher, while IL-6, IL-8, IL-15 were similar in COVID-19 compared to WNV patients. Q-Alb correlated with all proinflammatory markers, with IL-6, IL-8, and MIP-1ß (r ≥ 0.6, p < 0.01) demonstrating the strongest associations. CONCLUSIONS: Lack of SARS-CoV-2 RNA in CSF is consistent with pre-existing literature. Evidence of intrathecal proinflammatory markers in a subset of COVID-19 patients with BBB breakdown despite minimal CSF pleocytosis is atypical for neurotropic pathogens.


Asunto(s)
COVID-19 , Inflamación/virología , ARN Viral/líquido cefalorraquídeo , Barrera Hematoencefálica , COVID-19/fisiopatología , Estudios de Casos y Controles , Quimiocinas , Citocinas , Humanos , SARS-CoV-2
10.
J Clin Pathol ; 74(8): 496-503, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34049977

RESUMEN

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Servicio de Urgencia en Hospital , Laboratorios de Hospital , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , COVID-19/virología , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
11.
bioRxiv ; 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33758855

RESUMEN

The rapid global spread and continued evolution of SARS-CoV-2 has highlighted an unprecedented need for viral genomic surveillance and clinical viral sequencing. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine lab processes and results. This challenge will only increase with expanding global production of sequences by diverse research groups for epidemiological and clinical interpretation. We present an approach which uses synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination through a sequencing workflow. Applying this approach to the ARTIC Consortium's amplicon design, we define a series of best practices for Illumina-based sequencing and provide a detailed characterization of approaches to increase sensitivity for low-viral load samples incorporating the SDSIs. We demonstrate the utility and efficiency of the SDSI method amidst a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases.

12.
J Neurol Sci ; 421: 117308, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497950

RESUMEN

We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , COVID-19/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Microvasos/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Lesiones Encefálicas/etiología , COVID-19/complicaciones , Humanos , Unidades de Cuidados Intensivos/tendencias , Masculino , Microvasos/lesiones , Persona de Mediana Edad , Estudios Retrospectivos
13.
Science ; 371(6529)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33303686

RESUMEN

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , Filogenia , SARS-CoV-2/genética , Boston/epidemiología , COVID-19/transmisión , Brotes de Enfermedades , Monitoreo Epidemiológico , Humanos
14.
Nat Commun ; 11(1): 5921, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219225

RESUMEN

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (Streamlined Highlighting of Infections to Navigate Epidemics), a sensitive and specific diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We identify the optimal conditions to allow RPA-based amplification and Cas13-based detection to occur in a single step, simplifying assay preparation and reducing run-time. We improve HUDSON to rapidly inactivate viruses in nasopharyngeal swabs and saliva in 10 min. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-qPCR with a sample-to-answer time of 50 min. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Proteínas Asociadas a CRISPR/metabolismo , Técnicas de Diagnóstico Molecular/métodos , Bioensayo , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Fluorescencia , Humanos , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/virología , SARS-CoV-2
15.
medRxiv ; 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32869040

RESUMEN

SARS-CoV-2 has caused a severe, ongoing outbreak of COVID-19 in Massachusetts with 111,070 confirmed cases and 8,433 deaths as of August 1, 2020. To investigate the introduction, spread, and epidemiology of COVID-19 in the Boston area, we sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region, including nearly all confirmed cases within the first week of the epidemic and hundreds of cases from major outbreaks at a conference, a nursing facility, and among homeless shelter guests and staff. The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission, including outbreaks in homeless populations, and was exported to several other domestic and international sites. The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into MA early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data.

16.
medRxiv ; 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909014

RESUMEN

Developing and deploying new diagnostic tests is difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important for an effective response. In the early stages of a pandemic, laboratories play a key role in helping health care providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, polymerase chain reaction (PCR) remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility, and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to fast and accurate diagnostic testing in crisis conditions.

17.
medRxiv ; 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32743599

RESUMEN

IMPORTANCE: Microvascular lesions are common in patients with severe COVID-19. Radiologic-pathologic correlation in one case suggests a combination of microvascular hemorrhagic and ischemic lesions that may reflect an underlying hypoxic mechanism of injury, which requires validation in larger studies. OBJECTIVE: To determine the incidence, distribution, and clinical and histopathologic correlates of microvascular lesions in patients with severe COVID-19. DESIGN: Observational, retrospective cohort study: March to May 2020. SETTING: Single academic medical center. PARTICIPANTS: Consecutive patients (16) admitted to the intensive care unit with severe COVID-19, undergoing brain MRI for evaluation of coma or focal neurologic deficits. EXPOSURES: Not applicable. MAIN OUTCOME AND MEASURES: Hypointense microvascular lesions identified by a prototype ultrafast high-resolution susceptibility-weighted imaging (SWI) MRI sequence, counted by two neuroradiologists and categorized by neuroanatomic location. Clinical and laboratory data (most recent measurements before brain MRI). Brain autopsy and cerebrospinal fluid PCR for SARS-CoV 2 in one patient who died from severe COVID-19. RESULTS: Eleven of 16 patients (69%) had punctate and linear SWI lesions in the subcortical and deep white matter, and eight patients (50%) had >10 SWI lesions. In 4/16 patients (25%), lesions involved the corpus callosum. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. CONCLUSIONS AND RELEVANCE: SWI lesions are common in patients with neurological manifestations of severe COVID-19 (coma and focal neurologic deficits). The distribution of lesions is similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Collectively, these radiologic and histopathologic findings suggest that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.

18.
bioRxiv ; 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32511415

RESUMEN

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (SHERLOCK and HUDSON Integration to Navigate Epidemics), a sensitive and specific integrated diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We combine the steps of SHERLOCK into a single-step reaction and optimize HUDSON to accelerate viral inactivation in nasopharyngeal swabs and saliva. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-PCR with a sample-to-answer time of 50 minutes. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA