Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Biol Sci ; 291(2021): 20232738, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628118

RESUMEN

Midfacial morphology varies between hominoids, in particular between great apes and humans for which the face is small and retracted. The underlying developmental processes for these morphological differences are still largely unknown. Here, we investigate the cellular mechanism of maxillary development (bone modelling, BM), and how potential changes in this process may have shaped facial evolution. We analysed cross-sectional developmental series of gibbons, orangutans, gorillas, chimpanzees and present-day humans (n = 183). Individuals were organized into five age groups according to their dental development. To visualize each species's BM pattern and corresponding morphology during ontogeny, maps based on microscopic data were mapped onto species-specific age group average shapes obtained using geometric morphometrics. The amount of bone resorption was quantified and compared between species. Great apes share a highly similar BM pattern, whereas gibbons have a distinctive resorption pattern. This suggests a change in cellular activity on the hominid branch. Humans possess most of the great ape pattern, but bone resorption is high in the canine area from birth on, suggesting a key role of canine reduction in facial evolution. We also observed that humans have high levels of bone resorption during childhood, a feature not shared with other apes.


Asunto(s)
Resorción Ósea , Hominidae , Animales , Humanos , Hominidae/anatomía & histología , Hylobates , Estudios Transversales , Gorilla gorilla , Pan troglodytes , Morfogénesis , Evolución Biológica
2.
CBE Life Sci Educ ; 22(2): ar25, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37058442

RESUMEN

In-person undergraduate research experiences (UREs) promote students' integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students' self-efficacy development, but may otherwise be limited in their potential to promote scientific integration.


Asunto(s)
COVID-19 , Estudiantes , Humanos , Pandemias
3.
CBE Life Sci Educ ; 21(1): ar1, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34978923

RESUMEN

The COVID-19 pandemic shut down undergraduate research programs across the United States. A group of 23 colleges, universities, and research institutes hosted remote undergraduate research programs in the life sciences during Summer 2020. Given the unprecedented offering of remote programs, we carried out a study to describe and evaluate them. Using structured templates, we documented how programs were designed and implemented, including who participated. Through focus groups and surveys, we identified programmatic strengths and shortcomings as well as recommendations for improvements from students' perspectives. Strengths included the quality of mentorship, opportunities for learning and professional development, and a feeling of connection with a larger community. Weaknesses included limited cohort building, challenges with insufficient structure, and issues with technology. Although all programs had one or more activities related to diversity, equity, inclusion, and justice, these topics were largely absent from student reports even though programs coincided with a peak in national consciousness about racial inequities and structural racism. Our results provide evidence for designing remote Research Experiences for Undergraduates (REUs) that are experienced favorably by students. Our results also indicate that remote REUs are sufficiently positive to further investigate their affordances and constraints, including the potential to scale up offerings, with minimal concern about disenfranchising students.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Estudiantes , Racismo Sistemático , Estados Unidos
4.
Artículo en Inglés | MEDLINE | ID: mdl-33803843

RESUMEN

Heavy goods vehicle (HGV) driving is recognised as a highly hazardous occupation due to the long periods of sedentary behaviour, low levels of physical activity and unhealthy food options when working. These risk factors combine with shift work and concomitant irregular sleep patterns to increase the prevalence of fatigue. Fatigue is closely linked with stress and, subsequently, poor physiological and psychological health. In parallel, a wealth of evidence has demonstrated the health and wellbeing benefits of spending time in nature. Here, we sought to examine whether spending time in nature was associated with lower levels of fatigue, anxiety and depression in HGV drivers. 89 long-distance drivers (98.9% male, mean ± SD age: 51.0 ± 9 years, body mass index: 29.8 ± 4.7 kg/m2) participating in a wider health promotion programme reported time spent in nature (during and before the Covid-19 pandemic) and symptoms of occupational fatigue, depression and anxiety. After controlling for covariates, truck drivers who visited nature at least once a week exhibited 16% less chronic fatigue prior to the pandemic, and 23% less chronic fatigue and 20% less acute fatigue during the pandemic. No significant differences were observed for either anxiety or depression. As fatigue has a range of physical and mental health sequelae, we propose that increased exposure to natural settings may make a valuable contribution to interventions to promote the health and wellbeing of this underserved group.


Asunto(s)
Conducción de Automóvil , COVID-19 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vehículos a Motor , Pandemias , SARS-CoV-2 , Reino Unido/epidemiología
5.
Eur J Orthop Surg Traumatol ; 31(7): 1443-1449, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33611640

RESUMEN

INTRODUCTION: The use of arthroscopy to alleviate the symptoms of osteoarthritis has been questioned by recent high quality evidence. This has led to the development of guidelines by specialist and national bodies advocating against its use. AIMS: To examine the trends of the rates of arthroscopy in patients with knee osteoarthritis over the past five years and determining compliance with guidelines. METHODS: Multi-centre, retrospective audit in five hospital trusts in the United Kingdom. The number of arthroscopies performed by month from 2013 to 2017 was identified through hospital coding. Fifty randomly selected records from the year 2017 were further analysed to assess compliance with NICE guidelines. RESULTS: Between 2013 and 2017, the number of arthroscopies performed annually in five trusts dropped from 2028 to 1099. In the year 2017, 17.7% of patients with no mechanical symptoms and moderate-to-severe arthritis pre-operatively had arthroscopy. CONCLUSION: Knee arthroscopy continues to be used as a treatment for osteoarthritis, against national guidelines. Whilst overall numbers are declining, further interventions, including implementation of high-quality conservative care is required to further eliminate unnecessary procedures.


Asunto(s)
Artroscopía , Osteoartritis de la Rodilla , Humanos , Articulación de la Rodilla , Osteoartritis de la Rodilla/cirugía , Estudios Retrospectivos , Reino Unido
6.
Am J Phys Anthropol ; 174(3): 434-450, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33244746

RESUMEN

OBJECTIVES: Variation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. MATERIALS AND METHODS: We compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. RESULTS: All groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DISCUSSION: Results suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group-level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed.


Asunto(s)
Hueso Esponjoso/fisiología , Hueso Cortical/fisiología , Deportes/fisiología , Soporte de Peso/fisiología , Adulto , Antropología Física , Atletas , Teorema de Bayes , Hueso Esponjoso/diagnóstico por imagen , Hueso Cortical/diagnóstico por imagen , Humanos , Masculino , Tibia/diagnóstico por imagen , Tibia/fisiología , Adulto Joven
7.
J Hum Evol ; 142: 102747, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32240884

RESUMEN

The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.


Asunto(s)
Evolución Biológica , Hominidae/anatomía & histología , Hominidae/fisiología , Locomoción , Astrágalo/anatomía & histología , Animales , Femenino , Fósiles/anatomía & histología , Gorilla gorilla/anatomía & histología , Gorilla gorilla/fisiología , Humanos , Masculino , Hombre de Neandertal/anatomía & histología , Hombre de Neandertal/fisiología , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología
8.
Am J Phys Anthropol ; 168(1): 104-118, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30515772

RESUMEN

OBJECTIVE: This project investigates trabecular bone structural variation in the proximal humerus and femur of hunter-gatherer, mixed-strategy agricultural, medieval, and human groups to address three questions: (a) What is the extent of trabecular bone structural variation in the humerus and femur between populations with different inferred activity levels? (b) How does variation in the proximal humerus relate to variation in the proximal femur? (c) Are trabecular bone microstructural variables sexually dimorphic? METHODS: The proximal humerus and femur of 73 adults from five human groups with distinct subsistence strategies were scanned using a micro-computed tomography system. Centralized volumes of interest within the humeral and femoral heads were extracted and analyzed to quantify bone volume fraction, trabecular thickness, trabecular separation, connectivity density, degree of anisotropy, and bone surface density. RESULTS: In the humerus and femur, groups with the highest inferred activity levels have higher bone volume fraction and trabecular thickness, and lower bone surface density than those with lower inferred activity levels. However, the humeral pattern does not exactly mirror that of the femur, which demonstrates a steeper gradient of difference between subsistence groups. No significant differences were identified in trabecular separation. No consistent patterns of sexual dimorphism were present in the humerus or femur. CONCLUSIONS: Reduced skeletal robusticity of proximal humeral and femoral trabecular bone corresponds with reduced activity level inferred from subsistence strategy. However, human trabecular bone structural variation is complex and future work should explore how other factors (diet, climate, genetics, disease load, etc.), in addition to activity, influence bone structural variation.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Cabeza Femoral/anatomía & histología , Cabeza Humeral/anatomía & histología , Antropología Física , Entierro , Hueso Esponjoso/diagnóstico por imagen , Inglaterra , Femenino , Cabeza Femoral/diagnóstico por imagen , Humanos , Cabeza Humeral/diagnóstico por imagen , Masculino , Factores Sexuales , Sudán , Estados Unidos , Microtomografía por Rayos X
9.
J Hum Evol ; 121: 12-24, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29706230

RESUMEN

Adaptations indicative of habitual bipedalism are present in the earliest recognized hominins. However, debate persists about various aspects of bipedal locomotor behavior in fossil hominins, including the nature of gait kinematics, locomotor variability across different species, and the degree to which various australopith species engaged in arboreal behaviors. In this study, we analyze variation in trabecular bone structure of the femoral head using a sample of modern humans, extant non-human hominoids, baboons, and fossil hominins attributed to Australopithecus africanus, Paranthropus robustus, and the genus Homo. We use µCT data to characterize the fabric anisotropy, material orientation, and bone volume fraction of trabecular bone to reconstruct hip joint loading conditions in these fossil hominins. Femoral head trabecular bone fabric structure in australopiths is more similar to that of modern humans and Pleistocene Homo than extant apes, indicating that these australopith individuals walked with human-like hip kinematics, including a more limited range of habitual hip joint postures (e.g., a more extended hip) during bipedalism. Our results also indicate that australopiths have robust femoral head trabecular bone, suggesting overall increased loading of the musculoskeletal system comparable to that imposed by extant apes. These results provide new evidence of human-like bipedal locomotion in Pliocene hominins, even while other aspects of their musculoskeletal systems retain ape-like characteristics.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Fémur/anatomía & histología , Articulación de la Cadera/fisiología , Hominidae/fisiología , Papio/fisiología , Caminata , Animales , Fenómenos Biomecánicos , Fémur/fisiología , Fósiles , Masculino
10.
Anat Rec (Hoboken) ; 301(6): 1012-1025, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29055969

RESUMEN

Many studies have noted that the bones of the human upper limb display bilateral asymmetry, commonly linking this asymmetry in external and internal morphology to handedness and lateralization. Few studies, however, have attempted to track asymmetry throughout ontogeny. This study assesses the ontogenetic development of cortical and trabecular bone asymmetry in the humerus. We predict that directional asymmetry in structural properties will emerge in concert with hand preference and increased activity levels during the juvenile period. Paired humeri from 57 individuals from the Norris Farms #36 archaeological skeletal collection ranging in age from neonate to adult were used in the current study. Cortical bone cross-sectional properties and three-dimensional trabecular bone structure were quantified from microcomputed tomography data. The results indicate significant absolute asymmetry in all measured cortical and trabecular bone variables across all ages. Trabecular bone displays significantly higher absolute asymmetry than cortical bone. Contrary to expectations, however, this study found very little evidence for significant directional asymmetry in humeral length and cortical or trabecular bone variables, except in adults. The presence of significant absolute asymmetry in all age groups, and the lack of significant directional asymmetry in almost all variables at all ages, suggests that structural differences due to higher levels of habitual loading in the dominant arm are overlain on a template of potentially significant existing asymmetry. Anat Rec, 301:1012-1025, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/fisiología , Hueso Esponjoso/crecimiento & desarrollo , Hueso Cortical/crecimiento & desarrollo , Húmero/crecimiento & desarrollo , Adolescente , Adulto , Hueso Esponjoso/diagnóstico por imagen , Niño , Preescolar , Hueso Cortical/diagnóstico por imagen , Humanos , Húmero/diagnóstico por imagen , Lactante , Microtomografía por Rayos X
11.
J Hum Evol ; 115: 130-139, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29169679

RESUMEN

Femoral head diameter is commonly used to estimate body mass from the skeleton. The three most frequently employed methods, designed by Ruff, Grine, and McHenry, were developed using different populations to address different research questions. They were not specifically designed for application to female remains, and their accuracy for this purpose has rarely been assessed or compared in living populations. This study analyzes the accuracy of these methods using a sample of modern British women through the use of pelvic CT scans (n = 97) and corresponding information about the individuals' known height and weight. Results showed that all methods provided reasonably accurate body mass estimates (average percent prediction errors under 20%) for the normal weight and overweight subsamples, but were inaccurate for the obese and underweight subsamples (average percent prediction errors over 20%). When women of all body mass categories were combined, the methods provided reasonable estimates (average percent prediction errors between 16 and 18%). The results demonstrate that different methods provide more accurate results within specific body mass index (BMI) ranges. The McHenry Equation provided the most accurate estimation for women of small body size, while the original Ruff Equation is most likely to be accurate if the individual was obese or severely obese. The refined Ruff Equation was the most accurate predictor of body mass on average for the entire sample, indicating that it should be utilized when there is no knowledge of the individual's body size or if the individual is assumed to be of a normal body size. The study also revealed a correlation between pubis length and body mass, and an equation for body mass estimation using pubis length was accurate in a dummy sample, suggesting that pubis length can also be used to acquire reliable body mass estimates. This has implications for how we interpret body mass in fossil hominins and has particular relevance to the interpretation of the long pubic ramus that is characteristic of Neandertals.


Asunto(s)
Antropología Física/métodos , Peso Corporal , Adulto , Anciano , Anciano de 80 o más Años , Antropometría/métodos , Tamaño Corporal , Femenino , Fémur/anatomía & histología , Humanos , Persona de Mediana Edad , Modelos Biológicos , Pelvis/anatomía & histología , Reino Unido , Adulto Joven
12.
J Hum Evol ; 108: 147-160, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28622927

RESUMEN

The dispersal of the genus Homo out of Africa approximately 1.8 million years ago (Ma) has been understood within the context of changes in diet, behavior, and bipedal locomotor efficiency. While various morphological characteristics of the knee and ankle joints are considered part of a suite of traits indicative of, and functionally related to, habitual bipedal walking, the timing and phylogenetic details of these morphological changes remain unclear. To evaluate the timing of knee and ankle joint evolution, we apply geometric morphometric methods to three-dimensional digital models of the proximal and distal tibiae of fossil hominins, Holocene Homo sapiens, and extant great apes. Two sets of landmarks and curve semilandmarks were defined on each specimen. Because some fossils were incomplete, digital reconstructions were carried out independently to estimate missing landmarks and semilandmarks. Group shape variation was evaluated through shape-and form-space principal component analysis and fossil specimens were projected to assess variation in the morphological space computed from the extant comparative sample. We show that a derived proximal tibia (knee) similar to that seen in living H. sapiens evolved with early Homo at ∼2 Ma. In contrast, derived characteristics in the distal tibia appear later, probably with the arrival of Homo erectus. These results suggest a dissociation of the morphologies of the proximal and distal tibia, perhaps indicative of divergent functional demands and, consequently, selective pressures at these joints. It appears that longer distance dispersals that delivered the Dmanisi hominins to Georgia by 1.8 Ma and H. erectus to east-southeast Asia by 1.6 Ma were facilitated by the evolution of a morphologically derived knee complex comparable to that of recent humans and an ankle that was morphologically primitive. This research sets the foundation for additional paleontological, developmental, and functional research to better understand the mechanisms underlying the evolution of bipedalism.


Asunto(s)
Articulación del Tobillo/anatomía & histología , Evolución Biológica , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Articulación de la Rodilla/anatomía & histología , África , Puntos Anatómicos de Referencia/anatomía & histología , Puntos Anatómicos de Referencia/fisiología , Animales , Articulación del Tobillo/fisiología , Georgia (República) , Hominidae/fisiología , Humanos , Articulación de la Rodilla/fisiología , Filogenia , Tibia/anatomía & histología , Tibia/fisiología
13.
Am J Phys Anthropol ; 163(1): 148-157, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28218393

RESUMEN

OBJECTIVES: The fibula transmits loads within the lower limb of hominids. The few studies of variation in the cross-sectional geometric (CSG) properties of the fibula have established differences in its rigidity among groups engaged in distinct habitual loading activities. This study adds to this research by considering the relationship between CSG properties and the anatomical position of the fibula relative to the tibia among groups with differences in documented activity patterns. MATERIAL AND METHODS: We used pQCT scans taken at 50% of the length of the lower leg in 83 healthy young adult collegiate-aged individuals divided into five activity groups: runners, swimmers, cricketers, field hockey players, and non-athletes. We compared variation in calculated CSG properties against the distance between fibular and tibial centroids, as well as the angle of that plane relative to the plane of tibial Imax . RESULTS: Tibial and fibular CSG properties vary with respect to the relative position of the two bones. Tibial CSG properties differ in concert with the relative angle of the fibula to tibial Imax , while fibular CSG properties differ with the distance between the elements. Fibulae are more posterior-medially positioned in groups engaged in terrestrial athletics than among swimmers. DISCUSSION: The tibia and fibula experience different loads. The relative position of the two bones leads to compensatory differences in their CSG properties, perhaps due to increased resistance to bending in fibulae with greater distances from the tibia. Examinations of tibial CSG properties without considering the fibula limits interpretations about activity.


Asunto(s)
Peroné/anatomía & histología , Peroné/fisiología , Locomoción/fisiología , Tibia/anatomía & histología , Tibia/fisiología , Adulto , Anatomía Transversal , Fenómenos Biomecánicos , Humanos , Masculino , Deportes/fisiología , Adulto Joven
14.
J Hum Evol ; 97: 97-108, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27457548

RESUMEN

Trabecular bone is responsive to mechanical loading, and thus may be a useful tool for interpreting past behaviour from fossil morphology. However, the ability to meaningfully interpret variation in archaeological and hominin trabecular morphology depends on the extent to which trabecular bone properties are integrated throughout the postcranium or are locally variable in response to joint specific loading. We investigate both of these factors by comparing trabecular bone throughout the lower limb between a group of highly mobile foragers and two groups of sedentary agriculturalists. Trabecular bone structure is quantified in four volumes of interest placed within the proximal and distal joints of the femur and tibia. We determine how trabecular structures correspond to inferred behavioural differences between populations and whether the patterns are consistent throughout the limb. A significant correlation was found between inferred mobility level and trabecular bone structure in all volumes of interest along the lower limb. The greater terrestrial mobility of foragers is associated with higher bone volume fraction, and thicker and fewer trabeculae (lower connectivity density). In all populations, bone volume fraction decreases while anisotropy increases proximodistally throughout the lower limb. This observation mirrors reductions in cortical bone mass resulting from proximodistal limb tapering. The reduction in strength associated with reduced bone volume fraction may be compensated for by the increased anisotropy in the distal tibia. A similar pattern of trabecular structure is found throughout the lower limb in all populations, upon which a signal of terrestrial mobility appears to be superimposed. These results support the validity of using lower limb trabecular bone microstructure to reconstruct terrestrial mobility levels from the archaeological and fossil records. The results further indicate that care should be taken to appreciate variation resulting from differences in habitual activity when inferring behaviour from the trabecular structure of hominin fossils through comparisons with modern humans.


Asunto(s)
Arqueología , Hueso Esponjoso/anatomía & histología , Estilo de Vida , Extremidad Inferior/anatomía & histología , Evolución Biológica , Fósiles/anatomía & histología , Humanos , Illinois , Sudán
15.
Am J Phys Anthropol ; 160(2): 341-52, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26955790

RESUMEN

OBJECTIVES: This study aims to evaluate the use of quantitative methods of measuring variation in scalp hair fiber shape and pigmentation and carry out exploratory data analysis on a limited sample of individuals from diverse populations in order to inform future avenues of research for the evolution of modern human hair variation. METHODS: Cross-sectional area and shape and average curvature of scalp hair fibers were quantified using ImageJ. Pigmentation was analyzed using chemical methods estimating total melanin content through spectrophotometric methods, and eumelanin and pheomelanin content through HLPC analysis of melanin-specific degradation products. RESULTS: The initial results reinforced findings from earlier, traditional studies. African and African Diaspora scalp hair was significantly curled, (East) Asian hair was significantly thick, and European hair was significantly lighter in color. However, pigmentation analyses revealed a high level of variability in the melanin content of non-European populations and analysis of curvature found a large range of variation in the average curvature of East African individuals. CONCLUSIONS: Overall, these results suggest the usefulness of chemical methods for the elucidation of nonperceptible differences in scalp hair color and highlight the need for improvements in our assessment and understanding of hair fiber curvature. Am J Phys Anthropol 160:341-352, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Color del Cabello/fisiología , Cabello/fisiología , Grupos Raciales/estadística & datos numéricos , Cuero Cabelludo/fisiología , Adulto , Antropología Física , Femenino , Humanos , Masculino , Melaninas/análisis , Adulto Joven
16.
Am J Phys Anthropol ; 159(3): 410-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26536841

RESUMEN

OBJECTIVES: Morphological variation along the human limb reflects complex structural trade-offs between bone strength and mass. Here we assess how varying levels of plasticity and constraint affect this structure and influence the response to habitual loading along the diaphysis. MATERIALS AND METHODS: Cross-sectional geometric properties including total area, cortical area, and rigidity were compared from the upper (humerus: 50% of length, radius: 66%, 50%, 4%) and lower (tibia: 50%, 38%, 4%) limbs of male varsity-level athletes and matched controls with distinct habitual loading histories. RESULTS: Geometric properties among cricketers and swimmers were significantly greater at the humeral midshaft, mid-proximal radius, and radial midshaft compared to controls. By contrast, no significant differences were found among athletes or controls at the distal radius. The tibial midshafts of hockey players and runners also displayed greater area and rigidity compared to controls. Differences in geometry among the three groups became less pronounced distally, where structure was comparable among athletes and controls at 4% of tibial length. Additionally, coefficients of variation revealed that variation among athletes of the same sport was highest distally in both the upper and lower limb and lowest at midshaft, where structure most closely reflected the activity pattern of each loading group. DISCUSSION: These results support previous research suggesting that distal limb sections are more tightly constrained by safety factors compared to midshafts and proximal sections. Overall, it appears that plasticity and constraint vary not only between limb segments in correspondence to known activity patterns, but also along specific sections of the diaphysis.


Asunto(s)
Huesos/anatomía & histología , Diáfisis/anatomía & histología , Adulto , Anatomía Transversal , Antropología Física , Atletas , Humanos , Masculino , Fenotipo , Adulto Joven
17.
Proc Natl Acad Sci U S A ; 112(2): 372-7, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25535352

RESUMEN

The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.


Asunto(s)
Huesos/fisiología , Adulto , Animales , Antropología Física , Evolución Biológica , Fenómenos Biomecánicos , Peso Corporal , Huesos/anatomía & histología , Huesos/diagnóstico por imagen , Fósiles , Hominidae/anatomía & histología , Hominidae/fisiología , Humanos , Imagenología Tridimensional , Actividad Motora , Osteoporosis/etiología , Primates/anatomía & histología , Primates/fisiología , Soporte de Peso/fisiología , Microtomografía por Rayos X , Adulto Joven
18.
Hum Biol ; 85(1-3): 251-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24297229

RESUMEN

Human pygmy populations inhabit different regions of the world, from Africa to Melanesia. In Asia, short-statured populations are often referred to as "negritos." Their short stature has been interpreted as a consequence of thermoregulatory, nutritional, and/or locomotory adaptations to life in tropical forests. A more recent hypothesis proposes that their stature is the outcome of a life history trade-off in high-mortality environments, where early reproduction is favored and, consequently, early sexual maturation and early growth cessation have coevolved. Some serological evidence of deficiencies in the growth hormone/insulin-like growth factor axis have been previously associated with pygmies' short stature. Using genome-wide single-nucleotide polymorphism genotype data, we first tested whether different negrito groups living in the Philippines and Papua New Guinea are closely related and then investigated genomic signals of recent positive selection in African, Asian, and Papuan pygmy populations. We found that negritos in the Philippines and Papua New Guinea are genetically more similar to their nonpygmy neighbors than to one another and have experienced positive selection at different genes. These results indicate that geographically distant pygmy groups are likely to have evolved their short stature independently. We also found that selection on common height variants is unlikely to explain their short stature and that different genes associated with growth, thyroid function, and sexual development are under selection in different pygmy groups.


Asunto(s)
Adaptación Fisiológica/genética , Pueblo Asiatico/genética , Evolución Biológica , Población Negra/genética , Estatura/genética , Genética de Población , Nativos de Hawái y Otras Islas del Pacífico/genética , Antropología Física , Pueblo Asiatico/etnología , Población Negra/etnología , Estatura/etnología , Variación Genética , Genotipo , Humanos , Nativos de Hawái y Otras Islas del Pacífico/etnología , Papúa Nueva Guinea/etnología , Fenotipo , Filipinas/etnología , Polimorfismo de Nucleótido Simple
19.
Anat Rec (Hoboken) ; 296(11): 1695-707, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24123941

RESUMEN

This article investigates the relationship between the cortical bone of the radius and the muscle area of the forearm. The aim of this study was to develop a method for muscle area estimation from cortical bone area at 65% of radius length where the muscle area at the forearm is largest. Muscle area and cortical area were measured directly in vivo by peripheral Quantitative Computed Tomography (pQCT). We found significant correlations between muscle area and cortical area (r = 0.881) in the forearm that are in line with previous studies. We have set up a regression model by testing relevant parameters such as age, sex, forearm length, and stature that were all highly correlated to muscle area. The influence of age and sex on the proportion of muscle area to cortical area is strong and potentially related to the effects of testosterone and estrogen on the muscle-bone-unit. Muscle area estimation from cortical bone is possible with a Percent Standard Error of Estimate (%SEE) ranging from 12.03% to 14.83%, depending on the parameters available and the age and sex of the individual. Muscle area estimation from cortical bone can provide new information for the study of skeletal and/or fossil human remains.


Asunto(s)
Antebrazo/anatomía & histología , Músculo Esquelético/anatomía & histología , Radio (Anatomía)/anatomía & histología , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Femenino , Antebrazo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Radiografía , Radio (Anatomía)/diagnóstico por imagen , Análisis de Regresión , Factores Sexuales , Adulto Joven
20.
Ann N Y Acad Sci ; 1288: 86-99, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23627693

RESUMEN

Previous studies have shown a strong correspondence between long bone bilateral asymmetry and reported handedness. Here, we compare the pattern of asymmetry in mechanical properties of the humerus and second metacarpal of Pan troglodytes, recent British industrial and medieval populations, and a broad range of human hunter-gatherers, to test whether technological variation corresponds with lateralization in bone function. The results suggest that P. troglodytes are left-lateralized in the morphology of the humerus and right-lateralized in the second metacarpal, while all human populations are predominantly right-biased in the morphology of these bones. Among human populations, the second metacarpals of 63% of hunter-gatherers show right-hand bias, a frequency similar to that found among chimpanzees. In contrast, the medieval and recent British populations show over 80% right-lateralization in the second metacarpal. The proportion of individuals displaying right-directional asymmetry is less than the expected 90% among all human groups. The variation observed suggests that the human pattern of right-biased asymmetry developed in a mosaic manner throughout human history, perhaps in response to technological development.


Asunto(s)
Huesos , Pan troglodytes/fisiología , Población Blanca , Animales , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA