Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407114, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719740

RESUMEN

Herein we report the first transition metal-catalyzed approach to the enantioenriched synthesis of cyclic sulfonimidamides relying on commercially available palladium catalysts and ligands. High-throughput experimentation (HTE) was employed to identify the optimal catalyst system and solvent. The method is applied to a variety of saturated and unsaturated rings and exhibits the highest selectivity for 2-substituted allyl electrophiles. The products are further elaborated to complex, tricyclic scaffolds. DFT experiments presented herein highlight the key ligand substrate interactions leading to the high levels of enantioselectivity.

2.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38496594

RESUMEN

We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap m/z measurements to greater than 100,000 m/z. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow m/z selection windows followed by ECCR, multiple glycoform m/z values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.

3.
ACS Catal ; 14(1): 104-115, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38205021

RESUMEN

Interactions between catalysts and substrates can be highly complex and dynamic, often complicating the development of models to either predict or understand such processes. A dirhodium(II)-catalyzed C-H insertion of donor/donor carbenes into 2-alkoxybenzophenone substrates to form benzodihydrofurans was selected as a model system to explore nonlinear methods to achieve a mechanistic understanding. We found that the application of traditional methods of multivariate linear regression (MLR) correlating DFT-derived descriptors of catalysts and substrates leads to poorly performing models. This inspired the introduction of nonlinear descriptor relationships into modeling by applying the sure independence screening and sparsifying operator (SISSO) algorithm. Based on SISSO-generated descriptors, a high-performing MLR model was identified that predicts external validation points well. Mechanistic interpretation was aided by the deconstruction of feature relationships using chemical space maps, decision trees, and linear descriptors. Substrates were found to have a strong dependence on steric effects for determining their innate cyclization selectivity preferences. Catalyst reactive site features can then be matched to product features to tune or override the resultant diastereoselectivity within the substrate-dictated ranges. This case study presents a method for understanding complex interactions often encountered in catalysis by using nonlinear modeling methods and linear deconvolution by pattern recognition.

4.
J Am Soc Mass Spectrom ; 34(8): 1753-1760, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37463113

RESUMEN

Electron capture dissociation (ECD) is now a well-established method for sequencing peptides and performing top-down analysis on proteins of less than 30 kDa, and there is growing interest in using this approach for studies of larger proteins and protein complexes. Although much progress on ECD has been made over the past few decades, establishing methods for obtaining informative spectra still poses a significant challenge. Here we describe how digital quadrupole (DigiQ) ion isolation can be used for the mass selection of single charge states of proteins and protein complexes prior to undergoing ECD and/or charge reduction. First, we demonstrate that the DigiQ can isolate single charge states of monomeric proteins such as ubiquitin (8.6 kDa) and charge states of large protein complexes such as pyruvate kinase (234 kDa) using a hybrid quadrupole-TOF-MS (Agilent extended m/z range 6545XT). Next, we demonstrate that fragment ions resulting from ECD can be utilized to provide information about the sequence and structure of the cytochrome c/heme complex and the ubiquitin monomer. Lastly, an especially interesting result for DigiQ isolation and electron capture (EC) was noted; namely, the 16+ charge state of the streptavidin/biotin complex reveals different electron capture patterns for the biotinylated proteoforms of streptavidin. This result is consistent with previous reports that apo streptavidin exists in multiple conformations and that biotin binding shifts the conformational dynamics of the complex (Quintyn, R. Chem. Biol. 2015, 22 (55), 583-592).


Asunto(s)
Biotina , Electrones , Estreptavidina , Proteínas/química , Ubiquitina/química
5.
Chem Sci ; 14(23): 6443-6448, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37325151

RESUMEN

Substrates engineered to undergo a 1,4-C-H insertion to yield benzocyclobutenes resulted in a novel elimination reaction to yield ortho-quinone dimethide (o-QDM) intermediates that undergo Diels-Alder or hetero-Diels-Alder cycloadditions. The analogous benzylic acetals or ethers avoid the C-H insertion pathway completely and, after hydride transfer, undergo a de-aromatizing elimination reaction to o-QDM at ambient temperature. The resulting dienes undergo a variety of cycloaddition reactions with high diastereo- and regio-selectivity. This is one of the few examples of catalytic generation of o-QDM without the intermediacy of a benzocyclobutene and represents one of the mildest, ambient temperature processes to access these useful intermediates. This proposed mechanism is supported by DFT calculations. Moreover, the methodology was applied to the synthesis of (±)-isolariciresinol in 41% overall yield.

6.
Mol Cancer Ther ; 22(6): 726-736, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36940176

RESUMEN

EIF4E, an mRNA cap-binding protein, is necessary for cap-dependent translation. Overexpression of EIF4E is known to promote cancer development by preferentially translating a group of oncogenic mRNAs. Thus, 4EGI-1, a disruptor of EIF4E-EIF4G1 interaction, was developed to inhibit oncoprotein expression for cancer therapy. Interestingly, RBM38, an RNA-binding protein, interacts with EIF4E on TP53 mRNA, prevents EIF4E from binding to TP53 mRNA cap, and inhibits TP53 expression. Thus, Pep8, an eight amino acid peptide derived from RBM38, was developed to disrupt the EIF4E-RBM38 complex, leading to increased TP53 expression and decreased tumor cell growth. Herein, we have developed a first-in-class small-molecule compound 094, which interacts with EIF4E via the same pocket as does Pep8, dissociates RBM38 from EIF4E, and enhances TP53 translation in RBM38- and EIF4E-dependent manners. Structure-activity relationship studies identified that both the fluorobenzene and ethyl benzamide are necessary for compound 094 to interact with EIF4E. Furthermore, we showed that compound 094 is capable of suppressing three-dimensional tumor spheroid growth in RBM38- and TP53-dependent manners. In addition, we found that compound 094 cooperates with the chemotherapeutic agent doxorubicin and EIF4E inhibitor 4EGI-1 to suppress tumor cell growth. Collectively, we showed that two distinct approaches can be used together to target EIF4E for cancer therapy by enhancing wild-type TP53 expression (094) and by suppressing oncoprotein expression (4EGI-1).


Asunto(s)
Factor 4E Eucariótico de Iniciación , Neoplasias , Humanos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Mensajero/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
J Org Chem ; 87(18): 12175-12181, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36006876

RESUMEN

Polysubstituted allenes are useful synthetic intermediates in many applications, offering structural complexity, modularity, and their axial chirality in further transformations. While acyl and alkoxy-substituted allenes are known, there are currently few examples of allenes containing both functionalities and no reports of geminally substituted acyl/alkoxy allenes being isolated and characterized. Herein, we report the synthesis of tetrasubstituted allenes featuring a novel geminal acyl/alkoxy substitution. These unique "push-pull" allenes are bench-stable and exhibit interesting reactivity in several applications.


Asunto(s)
Alcadienos , Alcoholes , Alcadienos/química , Catálisis , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 61(25): e202203072, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35381108

RESUMEN

Panowamycins are a group of isochroman-based natural products first isolated from Streptomyces sp. K07-0010 in 2012 by Satoshi Omura and co-workers that exhibit modest anti-trypanosomal activity. Herein we demonstrate the first syntheses of these natural products and their epimers. Stereoselective dirhodium-catalyzed C-H insertion reactions with a donor/donor carbene construct the substituted isochroman core in the key bond-forming step. The syntheses are completed without the use of protecting groups and feature a late-stage Wacker oxidation. Incongruent NMR spectra between natural and synthetic samples revealed the structural misassignment of panowamycin A and veramycin F. Computational NMR studies suggested panowamycin A to be an alternate diastereomer, which was confirmed by synthesizing this isomer. Concurrent with this work, in 2021 Mahmud and co-workers came to the same conclusion with an updated NMR analysis of panowamycin A. In a divergent, asymmetric sequence, we report the synthesis of panowamycin A, panowamycin B, TM-135, and veramycin F.


Asunto(s)
Productos Biológicos , Metano , Productos Biológicos/química , Catálisis , Humanos , Metano/análogos & derivados , Metano/química , Oxidación-Reducción
9.
Chem Sci ; 13(4): 1030-1036, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35211269

RESUMEN

Intramolecular C-H insertions with donor/donor dirhodium carbenes provide a concise and highly stereoselective method to set two contiguous stereocenters in a single step. Herein, we report the insertion of donor/donor carbenes into stereogenic carbon centers allowing access to trisubstituted benzodihydrofurans in a single step. This study illuminates, for the first time, the stereochemical impact on the carbene center and delineates the structural factors that enable control over both stereogenic centers. Sterically bulky, highly activated C-H insertion centers exhibit high substrate control yielding a single diastereomer and a single enantiomer of product regardless of the catalyst used. Less bulky, less activated C-H insertion centers exhibit catalyst control over the diastereomeric ratio (dr), where a single enantiomer of each diastereomer is observed with high selectivity. A combination of experimental studies and DFT calculations was used to elucidate the origin of these results. First, hydride transfer from the stereogenic insertion site proceeds with high stereoselectivity to the carbene center, thus determining the absolute configuration of the product. Second, the short lived zwitterionic intermediate can diaster-eoselectively ring-close by a hitherto unreported SE2 mechanism that is either controlled by the substrate or the catalyst. These results demonstrate that donor/donor carbenes undergo uniquely stereoselective reactions that originate from a stepwise reaction mechanism, in contrast to the analogous concerted reactions of carbenes with one or more electron-withdrawing groups attached.

10.
Anal Chem ; 94(9): 3888-3896, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35188751

RESUMEN

Tandem mass spectrometry of denatured, multiply charged high mass protein precursor ions yield extremely dense spectra with hundreds of broad and overlapping product ion isotopic distributions of differing charge states that yield an elevated baseline of unresolved "noise" centered about the precursor ion. Development of mass analyzers and signal processing methods to increase mass resolving power and manipulation of precursor and product ion charge through solution additives or ion-ion reactions have been thoroughly explored as solutions to spectral congestion. Here, we demonstrate the utility of electron capture dissociation (ECD) coupled with high-resolution cyclic ion mobility spectrometry (cIMS) to greatly increase top-down protein characterization capabilities. Congestion of protein ECD spectra was reduced using cIMS of the ECD product ions and "mobility fractions", that is, extracted mass spectra for segments of the 2D mobiligram (m/z versus drift time). For small proteins, such as ubiquitin (8.6 kDa), where mass resolving power was not the limiting factor for characterization, pre-IMS ECD and mobility fractions did not significantly increase protein sequence coverage, but an increase in the number of identified product ions was observed. However, a dramatic increase in performance, measured by protein sequence coverage, was observed for larger and more highly charged species, such as the +35 charge state of carbonic anhydrase (29 kDa). Pre-IMS ECD combined with mobility fractions yielded a 135% increase in the number of annotated isotope clusters and a 75% increase in unique product ions compared to processing without using the IMS dimension. These results yielded 89% sequence coverage for carbonic anhydrase.


Asunto(s)
Electrones , Espectrometría de Movilidad Iónica , Secuencia de Aminoácidos , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos
11.
Org Lett ; 24(5): 1164-1168, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35103474

RESUMEN

The Lewis-acid-promoted addition of prochiral E- and Z-allyl nucleophiles to chiral α-alkoxy N-tosyl imines is described. Alkene geometry is selectively transferred to the newly formed carbon-carbon bond, resulting in stereochemical control of C1, C2, and C3 of the resulting 2-alkoxy-3-N-tosyl-4-alkyl-5-hexene products. A computational analysis to elucidate the high selectivity is also presented. This methodology was employed in the synthesis of two naturally occurring isomers of clausenamide.

12.
J Org Chem ; 87(5): 2773-2778, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029404

RESUMEN

Lewis acid mediated allylations of ß-alkoxy N-tosyl imines using allyltrimethylsilane lead to 3-alkoxy homoallylic N-tosyl amines with anti-selectivity. Two methods of Cu(OTf)2-mediated allylations are reported herein, demonstrating that diastereoselectivity can be achieved through 1,3 acyclic stereocontrol of ß-chiral aldimines. Observed selectivity trends and computational evidence suggest selectivity arises through the formation of a six-membered ring chelate. The product ratios of these allylations are dependent on conformational preferences of the chelate and steric effects in the transition-state structures.


Asunto(s)
Aminas , Iminas , Aminas/química , Iminas/química , Estereoisomerismo
13.
ACS Chem Biol ; 16(11): 2315-2325, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34520180

RESUMEN

Pseudoenzymes have emerged as key regulatory elements in all kingdoms of life despite being catalytically nonactive. Yet many factors defining why one protein is active while its homologue is inactive remain uncertain. For pseudoenzyme-enzyme pairs, the similarity of both subunits can often hinder conventional characterization approaches. In plants, a pseudoenzyme, PDX1.2, positively regulates vitamin B6 production by association with its active catalytic homologues such as PDX1.3 through an unknown assembly mechanism. Here we used an integrative experimental approach to learn that such pseudoenzyme-enzyme pair associations result in heterocomplexes of variable stoichiometry, which are unexpectedly tunable. We also present the atomic structure of the PDX1.2 pseudoenzyme as well as the population averaged PDX1.2-PDX1.3 pseudoenzyme-enzyme pair. Finally, we dissected hetero-dodecamers of each stoichiometry to understand the arrangement of monomers in the heterocomplexes and identified symmetry-imposed preferences in PDX1.2-PDX1.3 interactions. Our results provide a new model of pseudoenzyme-enzyme interactions and their native heterogeneity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Enzimas/metabolismo , Enzimas/química , Unión Proteica , Vitamina B 6/biosíntesis
14.
Front Immunol ; 12: 706757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335620

RESUMEN

Three clinically relevant ebolaviruses - Ebola (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) viruses, are responsible for severe disease and occasional deadly outbreaks in Africa. The largest Ebola virus disease (EVD) epidemic to date in 2013-2016 in West Africa highlighted the urgent need for countermeasures, leading to the development and FDA approval of the Ebola virus vaccine rVSV-ZEBOV (Ervebo®) in 2020 and two monoclonal antibody (mAb)-based therapeutics (Inmazeb® [atoltivimab, maftivimab, and odesivimab-ebgn] and Ebanga® (ansuvimab-zykl) in 2020. The humoral response plays an indispensable role in ebolavirus immunity, based on studies of mAbs isolated from the antibody genes in peripheral blood circulating ebolavirus-specific human memory B cells. However, antibodies in the body are not secreted by circulating memory B cells in the blood but rather principally by plasma cells in the bone marrow. Little is known about the protective polyclonal antibody responses in convalescent plasma. Here we exploited both single-cell antibody gene sequencing and proteomic sequencing approaches to assess the composition of the ebolavirus glycoprotein (GP)-reactive antibody repertoire in the plasma of an EVD survivor. We first identified 1,512 GP-specific mAb variable gene sequences from single cells in the memory B cell compartment. Using mass spectrometric analysis of the corresponding GP-specific plasma IgG, we found that only a portion of the large B cell antibody repertoire was represented in the plasma. Molecular and functional analysis of proteomics-identified mAbs revealed recognition of epitopes in three major antigenic sites - the GP head domain, the glycan cap, and the base region, with a high prevalence of neutralizing and protective mAb specificities that targeted the base and glycan cap regions on the GP. Polyclonal plasma antibodies from the survivor reacted broadly to EBOV, BDBV, and SUDV GP, while reactivity of the potently neutralizing mAbs we identified was limited mostly to the homologous EBOV GP. Together these results reveal a restricted diversity of neutralizing humoral response in which mAbs targeting two antigenic sites on GP - glycan cap and base - play a principal role in plasma-antibody-mediated protective immunity against EVD.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Ebolavirus/inmunología , Glicoproteínas de Membrana/inmunología , Adulto , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Proteómica
15.
J Org Chem ; 86(17): 11599-11607, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34351161

RESUMEN

The mechanisms for the three- and four-component variants of the Castagnoli-Cushman reaction (CCR) have been investigated. A series of crossover experiments were conducted to probe the structure and reactivity of known amide-acid intermediates for the three- and four-component variants of the CCR (3CR and 4CR, respectively). Control experiments paired with in situ reaction monitoring with infrared spectroscopy for the 4CR align with a mechanism in which amide-acids derived from maleic anhydride can reversibly form free amine and cyclic anhydride. Although this equilibrium is unfavorable, the aldehyde present can trap the primary amine through imine formation and react with the enol form of the anhydride through a Mannich-like mechanism. This detailed mechanistic investigation coupled with additional crossover experiments supports an analogous mechanism for the 3CR and has led to the elucidation of new 3CR conditions with homophthalic anhydride, amines, and aldehydes for the formation of dihydroisoquinolones in good yields and excellent diastereoselectivity. This work represents the culmination of more than a decade of mechanistic speculation for the 3- and 4CR, enabling the design of new multicomponent reactions that exploit this novel mechanism.


Asunto(s)
Aldehídos , Aminas , Amidas , Anhídridos , Iminas
16.
ACS Omega ; 6(16): 10776-10789, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34056232

RESUMEN

The metal-binding capabilities of the spiropyran family of molecular switches have been explored for several purposes from sensing to optical circuits. Metal-selective sensing has been of great interest for applications ranging from environmental assays to industrial quality control, but sensitive metal detection for field-based assays has been elusive. In this work, we demonstrate colorimetric copper sensing at low micromolar levels. Dimethylamine-functionalized spiropyran (SP1) was synthesized and its metal-sensing properties were investigated using UV-vis spectrophotometry. The formation of a metal complex between SP1 and Cu2+ was associated with a color change that can be observed by the naked eye as low as ≈6 µM and the limit of detection was found to be 0.11 µM via UV-vis spectrometry. Colorimetric data showed linearity of response in a physiologically relevant range (0-20 µM Cu2+) with high selectivity for Cu2+ ions over biologically and environmentally relevant metals such as Na+, K+, Mn2+, Ca2+, Zn2+, Co2+, Mg2+, Ni2+, Fe3+, Cd2+, and Pb2+. Since the color change accompanying SP1-Cu2+ complex formation could be detected at low micromolar concentrations, SP1 could be viable for field testing of trace Cu2+ ions.

17.
J Am Soc Mass Spectrom ; 32(8): 2081-2091, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914527

RESUMEN

Electron-based dissociation (ExD) produces uncluttered mass spectra of intact proteins while preserving labile post-translational modifications. However, technical challenges have limited this option to only a few high-end mass spectrometers. We have developed an efficient ExD cell that can be retrofitted in less than an hour into current LC/Q-TOF instruments. Supporting software has been developed to acquire, process, and annotate peptide and protein ExD fragmentation spectra. In addition to producing complementary fragmentation, ExD spectra enable many isobaric leucine/isoleucine and isoaspartate/aspartate pairs to be distinguished by side-chain fragmentation. The ExD cell preserves phosphorylation and glycosylation modifications. It also fragments longer peptides more efficiently to reveal signaling cross-talk between multiple post-translational modifications on the same protein chain and cleaves disulfide bonds in cystine knotted proteins and intact antibodies. The ability of the ExD cell to combine collisional activation with electron fragmentation enables more complete sequence coverage by disrupting intramolecular electrostatic interactions that can hold fragments of large peptides and proteins together. These enhanced capabilities made possible by the ExD cell expand the size of peptides and proteins that can be analyzed as well as the analytical certainty of characterizing their post-translational modifications.


Asunto(s)
Espectrometría de Masas/instrumentación , Proteínas/análisis , Proteínas/metabolismo , Disulfuros/química , Electrones , Glicosilación , Insulina/análisis , Insulina/química , Ácido Isoaspártico/química , Leucina/química , Lisina/química , Espectrometría de Masas/métodos , Fosfopéptidos/análisis , Fosfopéptidos/química , Fosforilación , Prolina/química , Procesamiento Proteico-Postraduccional , Proteínas/química , Programas Informáticos , Sustancia P/análisis , Sustancia P/química , Sustancia P/metabolismo
18.
Angew Chem Int Ed Engl ; 60(13): 6864-6878, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32770624

RESUMEN

Donor/donor carbenes are relatively new in the field of carbene chemistry; although applications in C-H and X-H insertion reactions are few in number, they demonstrate exquisite chemo- and stereo-selectivity. Recent reports have shown that C-H, N-H, B-H, O-H, S-H, Si-H, Ge-H, Sn-H and P-H insertion reactions are feasible with a variety of transition metal catalysts, both inter- and intramolecularly. Furthermore, high degrees of diastereo- and enantioselectivity have been observed in several cases. Methods typically involve the formation of a diazo-based carbene precursor, but procedures using diazo-free metal carbenes have been developed with significant success. This Minireview covers transition-metal catalyzed insertion reactions with donor/donor and donor carbenes, providing context for future developments in this emerging field.

19.
Artículo en Inglés | MEDLINE | ID: mdl-33046497

RESUMEN

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Asunto(s)
Antibacterianos , Proteómica , Antibacterianos/farmacología , Bacillus subtilis , Proteínas Bacterianas/genética , Tetraciclinas
20.
Chem Sci ; 11(2): 494-498, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32874491

RESUMEN

Reports of C-H insertions forming six-membered rings containing heteroatoms are rare due to Stevens rearrangements occurring after nucleophilic attack on the carbene by a heteroatom. Using donor/donor carbenes and Rh2(R-PTAD)4 as a catalyst, we have synthesized a collection of isochroman substrates in good yield, with excellent diastereo- and enantioselectivity, and no rearrangement products were observed. Furthermore, we report the first synthesis of six-membered rings containing nitrogen by C-H insertion to form tetrahydroisoquinolines. In one case, a Stevens rearrangement product was isolated at elevated temperature from a carbamate-protected amine substrate and computational evidence suggests formation through a free ylide not bound to rhodium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA