Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
R Soc Open Sci ; 11(5): 231229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721132

RESUMEN

4,6-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenyl-1,3,5-triazin-2-amine (PTA-1), N-(4-bromophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine (PTA-2) and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine (PTA-3) were synthesized and characterized. Their corrosion inhibition of carbon C-steel in 0.25 M H2SO4 was studied by electrochemical impedance. The inhibition efficiency (IE%) of triazine was superior due to the cumulative inhibition of triazine core structure and pyrazole motif. Potentiodynamic polarizations suggested that s-triazine derivatives behave as mixed type inhibitors. The IE% values were 96.5% and 93.4% at 120 ppm for inhibitor PTA-2 and PTA-3 bearing -Br and -OCH3 groups on aniline, respectively. While PTA-1 without an electron donating group showed only 79.0% inhibition at 175 ppm. The adsorption of triazine derivatives followed Langmuir and Frumkin models. The values of adsorption equilibrium constant K°ads and free energy change ΔG°ads revealed that adsorption of inhibitor onto steel surface was favoured. A corrosion inhibition mechanism was proposed suggesting the presence of physical and chemical interactions. Density functional theory computational investigation corroborated nicely with the experimental results. Monte Carlo simulation revealed that the energy associated with the metal/adsorbate arrangement dE ads/dN i, for both forms of PTA-2 and PTA-3 with electron donating groups (-439.73 and -436.62 kcal mol-1) is higher than that of PTA-1 molecule (-428.73 kcal mol-1). This aligned with experimental inhibition efficiency results.

2.
Cancer Immunol Res ; 12(5): 559-574, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38407894

RESUMEN

Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.


Asunto(s)
Interleucina-15 , Activación de Linfocitos , Extractos de Tejidos , Interleucina-15/farmacología , Animales , Masculino , Extractos de Tejidos/farmacología , Humanos , Ratones , Activación de Linfocitos/inmunología , Línea Celular Tumoral , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/terapia , Neoplasias de la Próstata Resistentes a la Castración/patología , Inmunoterapia Adoptiva/métodos
3.
ACS Omega ; 9(3): 3541-3553, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284053

RESUMEN

Ab initio calculations were performed to determine the sensing behavior of g-C3N4 and Li metal-doped g-C3N4 (Li/g-C3N4) quantum dots toward toxic compounds acetamide (AA), benzamide (BA), and their thio-analogues, namely, thioacetamide (TAA) and thiobenzamide (TAA). For optimization and interaction energies, the ωB97XD/6-31G(d,p) level of theory was used. Interaction energies (Eint) illustrate the high thermodynamic stabilities of the designed complexes due to the presence of the noncovalent interactions. The presence of electrostatic forces in some complexes is also observed. The observed trend of Eint in g-C3N4 complexes was BA > TAA > AA > TBA, while in Li/g-C3N4, the trend was BA > AA > TBA > TAA. The electronic properties were studied by frontier molecular orbital (FMO) and natural bond orbital analyses. According to FMO, lithium metal doping greatly enhanced the conductivity of the complexes by generating new HOMOs near the Fermi level. A significant amount of charge transfer was also observed in complexes, reflecting the increase in charge conductivity. NCI and QTAIM analyses evidenced the presence of significant noncovalent dispersion and electrostatic forces in Li/g-C3N4 and respective complexes. Charge decomposition analysis gave an idea of the transfer of charge density between quantum dots and analytes. Finally, TD-DFT explained the optical behavior of the reported complexes. The findings of this study suggested that both bare g-C3N4 and Li/g-C3N4 can effectively be used as atmospheric sensors having excellent adsorbing properties toward toxic analytes.

4.
Mol Cell Biochem ; 479(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36943663

RESUMEN

Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.


Asunto(s)
Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática/patología , Metabolismo de los Lípidos , Autofagia
5.
ACS Omega ; 8(48): 45589-45598, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075839

RESUMEN

Scientists are continuously trying to discover new approaches to develop materials with exceptional nonlinear optical responses. Compared with the single-ring Janus face compound (F6C6H6), the three-ring Janus face compound (C13H10F12) has a larger surface, where superalkali metals can be doped quite easily. Herein, the nonlinear optical response of Janus molecule dodecafluorophenylene (DDFP)-based superalkalides has been explored. The stability of the newly designed complexes is evident in the negative interaction energy values (ranging from -42.17 to -60.91 kcal/mol). The superalkalide nature of the complexes is corroborated through natural bond orbital (NBO) analysis, which shows negative charges on M3. This feature is further confirmed through frontier molecular orbital (FMO) analyses showing the highest occupied molecular orbital (HOMO) density over superalkalis (M3). The analysis also reveals that the H-L gap is reduced from 9.57 eV (for bare DDFP) to 2.11 eV for doped systems by adsorption of dopants on the DDFP surface. Moreover, the NLO response of the studied complexes is evaluated via static hyperpolarizabilities. The maximum value of first hyperpolarizability (ßo) among all of the designed compounds is for K3-DDFP-K3 (7.80 × 104 au) at M06-2X/6-31+G(d,p) level of theory. The ßo is also rationalized through a two-level model. Furthermore, for ßvec, the projection of hyperpolarizability on the dipole moment is calculated. The comparable results of ßvec and ßo indicate that the charge transfer in the complexes is parallel to the molecular dipole moments. These compounds, besides providing a new entry into excess-electron compounds, will also pave the way for the design and synthesis of further novel NLO materials.

6.
Mol Biol Rep ; 51(1): 26, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127201

RESUMEN

Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.


Asunto(s)
Vesículas Extracelulares , Lesión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Inflamación , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/terapia , Pulmón
7.
Glob Chall ; 7(11): 2300178, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970538

RESUMEN

This paper reports the Maisotsenko's cycle-based waste heat recovery system with enhanced humidification to exploit the maximum waste heat recovery potential of the gas turbine. This research uses an integrated methodology coupling thermodynamic balances with heat transfer model of air saturator. The performance of the system is deduced which are assisted with sensitivity analysis indicating the optimal mass flow rate ratio (0.7-0.8) and pressure ratio (4.5-5.0) between the topping and bottoming cycles, and the air saturator split (extraction) ratio (0.5). The net-work output, energy, and exergy efficiencies of the system are found to be ≈58.39 MW, ≈55.85%, and ≈52.79%, respectively. The maximum exergy destruction ratios are found as 68.2% for the combustion chamber, 16.0% for the topping turbine, 5.7% for topping compressor, 4.9% air saturator. The integration of Maisotsenko's cycle-based waste heat recovery system with a comprehensive thermodynamic model, as demonstrated in this research, offers valuable insights into enhancing the efficiency, cost-effectiveness, and environmental impact of gas turbines. By presenting fundamental equations related to thermodynamic balances, this work serves as an invaluable educational resource, equipping future researchers and students with the knowledge and skills needed to advance the study of thermodynamics and sustainable energy solutions.

8.
ACS Omega ; 8(41): 37820-37829, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867697

RESUMEN

In the pursuit of sustainable clean energy sources, the hydrogen evolution reaction (HER) has attained significant interest from the scientific community. Single-atom catalysts (SACs) are among the most promising candidates for future electrocatalysis because they possess high thermal stability, effective electrical conductivity, and excellent percentage atom utilization. In the present study, the applicability of late first-row transition metals (Fe-Zn) decorated on the magnesium oxide nanocage (TM@Mg12O12) as SACs for the HER has been studied, via density functional theory. The late first-row transition metals have been chosen as they have high abundance and are relatively low-cost. Among the studied systems, results show that the Fe@Mg12O12 SAC is the best candidate for catalyzing the HER reaction as it exhibits the lowest activation barrier for HER. Moreover, Fe@Mg12O12 shows high stability (Eint = -1.64 eV), which is essential in designing SACs to prevent aggregation of the metal. Furthermore, the results of the electronic properties' analysis showed that the HOMO-LUMO gap of the nanocage is decreased significantly upon doping of Fe (from 4.81 to 2.28 eV), indicating an increase in the conductivity of the system. This study highlights the potential application of the TM@nanocage SAC systems as effective HER catalysts.

9.
RSC Adv ; 13(44): 30787-30797, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37869396

RESUMEN

A computational investigation using M06-2X/6-31+G(d) method is reported for the substitution effects on 8π electrocyclisation of conjugated octatetraene. This systematic study describes the mono- and di-substitution effect across the 1,3,5,7-octatetraene skeleton. A general preference of the outward substitution over the inward, at C1 position of the monosubstituted system is observed. However, mesomerically electron donating group (-NH2 and -OH) display an opposite effect with respect to secondary orbital interaction (SOI) between the lone pair on the substituent and the orbital. A comparative evaluation on the computed activation energies for the 1-, 2-, 3-, and 4-monosubstituted system showed an insignificant impact on the rate of the reaction, in contrast to the electrocyclic ring closure of the unsubstituted compound. Computations of disubstituted system are more pronounced, where a remarkable acceleration is observed for 2-NO2-7-NO2 substituted octatetraene at 4.9 kcal mol-1, and a noticeable deceleration for 4-CH3-5-CH3 substituted octatetraene at 25.4 kcal mol-1 from the parent molecule, 17.0 kcal mol-1. A visible accelerated effects are commonly exhibited by the substitution on the terminal double bonds (C1, C2, C7, and C8), that are 1,2-, 1,7-, 1,8-, and 2,7-patterns, in regard to the greater orbital interaction for the new σ-bond formation. Despite the unfavourable steric clashes of the substituents in the 1,8-system, an apparent reduction in the energy barrier up to 7.4 kcal mol-1 is computed for 1-NH2-8-NO2 system from 17.0 kcal mol-1. This is due to the synergistic effect of the electron donor and electron acceptor, enhancing the stability of the transition structure. The electrocyclic ring closure involving vicinal substitution patterns, such as 1,2-, 2,3-, 3,4-, and 4,5-systems are critically dominated by steric crowding between the adjacent functional groups. In certain cases of the 1,2-substituted system, a noticeable accelerated effects are found for 1-NH2-2-NH2-substituted compound (9.7 kcal mol-1) due to an increased in electronic density on the substituted terminal double bond (C1-C2), hence favouring the formation of the new σ-bond.

10.
ACS Omega ; 8(39): 36493-36505, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810689

RESUMEN

Hydrogen is currently considered as the best alternative for traditional fuels due to its sustainable and ecofriendly nature. Additionally, hydrogen dissociation is a critical step in almost all hydrogenation reactions, which is crucial in industrial chemical production. A cost-effective and efficient catalyst with favorable activity for this step is highly desirable. Herein, transition-metal-doped fullerene (TM@C60) complexes are designed and investigated as single-atom catalysts for the hydrogen splitting process. Interaction energy analysis (Eint) is also carried out to demonstrate the stability of designed TM@C60 metallofullerenes, which reveals that all the designed complexes have higher thermodynamic stability. Furthermore, among all the studied metallofullerenes, the best catalytic efficiency for hydrogen dissociation is seen for the Sc@C60 catalyst Ea = 0.13 eV followed by the V@C60 catalyst Ea = 0.19 eV. The hydrogen activation and dissociation processes over TM@C60 metallofullerenes is further elaborated by analyzing charge transfer via the natural bond orbital and electron density difference analyses. Additionally, quantum theory of atoms in molecule analysis is carried out to investigate the nature of interatomic interactions between hydrogen molecules and TMs@C60 metallofullerenes. Overall, results of the current study declare that the Sc@C60 catalyst can act as a low cost, highly efficient, and noble metal-free single-atom catalyst to efficiently catalyze hydrogen dissociation reaction.

11.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687112

RESUMEN

Switchable nonlinear optical (NLO) materials have widespread applications in electronics and optoelectronics. Thermo-switches generate many times higher NLO responses as compared to photo-switches. Herein, we have investigated the geometric, electronic, and nonlinear optical properties of spiropyranes thermochromes via DFT methods. The stabilities of close and open isomers of selected spiropyranes are investigated through relative energies. Electronic properties are studied through frontier molecular orbitals (FMOs) analysis. The lower HOMO-LUMO energy gap and lower excitation energy are observed for open isomers of spiropyranes, which imparts the large first hyperpolarizability value. The delocalization of π-electrons, asymmetric distribution and elongated conjugation system are dominant factors for high hyperpolarizability values of open isomers. For deep understanding, we also analyzed the frequency-dependent hyperpolarizability and refractive index of considered thermochromes. The NLO response increased significantly with increasing frequency. Among all those compounds, the highest refractive index value is observed for the open isomer of the spiropyran 1 (1.99 × 10-17 cm2/W). Molecular absorption analysis confirmed the electronic excitation in the open isomers compared to closed isomers. The results show that reversible thermochromic compounds act as excellent NLO molecular switches and can be used to design advanced electronics.

12.
Heliyon ; 9(9): e19325, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662734

RESUMEN

Significant efforts are continuously exerted by the scientific community to explore new strategies to design materials with high nonlinear optical responses. An effective approach is to design alkalides based on Janus molecules. Herein, we present a new approach to remarkably boost the NLO response of alkalides by stacking the Janus molecules. Alkalides based on stacked Janus molecule, M-n-M' (where n = 2 & 3 while M and M' are Li/Na/K) are studied for structural, energetic, electrical, and nonlinear optical properties. The thermodynamic stability of the designed complexes is confirmed by the energetic stabilities, which range between -14.07 and -28.77 kcal/mol. The alkalide character of alkali metals-doped complexes is confirmed by the NBO charge transfer and HOMO(s) densities. The HOMO densities are located on the doped alkali metal atoms, indicating their alkalide character. The absorptions in UV-Vis and near IR region confirm the deep ultraviolet transparency of the designed complexes. The maximum first static and dynamic hyperpolarizabilities of 5.13 × 107 and 6.6 × 106 au (at 1339 nm) confirm their high NLO response, especially for K-2-M' complexes. The NLO response of alkalides based on stacked Janus molecules is 1-2 orders of magnitude higher than the alkalide based on Janus monomer. The high values of dc-Kerr and electric field-induced response e.g., max ∼107 and 108 au, respectively have been obtained. These findings suggest that our designed complexes envision a new insight into the rational design of stable high NLO performance materials.

13.
Heliyon ; 9(8): e18264, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533989

RESUMEN

The designing of new materials having outstanding nonlinear optical (NLO) response is much needed for use in latest optics. Herein, the geometric, electronic and NLO properties of alkali and alkaline earth metals doped C6O6Li6 (alk-C6O6Li6-alkearth, alkearth = Ca, Mg, Be and alk = K, Na, Li) electrides is studied via quantum chemical approach. The interaction energies (Eint) are examined to illustrate their thermodynamic stability. The strong interaction energy of -39.99 kcal mol-1 is observed for Ca-C6O6Li6-Li electride in comparison to others. Frontier molecular orbitals (FMOs) energy gap of considered complexes is changed due to the electronic density shifting between metals and C6O6Li6 surface, which notifies the semi conducting properties of these electrides. The FMOs isodensities and natural bond orbital (NBO) charge analysis are performed to justify charge transfer between dopants and complexant. UV-Visible study also confirmed the application of these electrides as deep ultra-violet laser devices. NLO response is studied through calculation of first hyperpolarizability (ßo). The highest ßo value of 1.68 × 105 au is calculated for Mg-C6O6Li6-K electride. NLO response is further rationalized by three- and two-level models approach.

14.
J Cell Biochem ; 124(8): 1082-1104, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37566723

RESUMEN

Natural killer (NK) cells are considered to be the foremost fighters of our innate immune system against foreign invaders and thus tend to promptly latch onto the virus-infected and tumor/cancerous cells, killing them through phagocytosis. At present, the application of genetically engineered Chimeric antigen receptor (CAR) receptors ensures a guaranteed optimistic response with NK cells and would not allow the affected cells to dodge or escape unchecked. Hence the specificity and uniqueness of CAR-NK cells over CAR-T therapy make them a better immunotherapeutic choice to reduce the load of trafficking of numerous tumor cells near the healthy cell populations in a more intact way than offered by CAR-T immunotherapy. Our review mainly focuses on the preclinical, clinical, and recent advances in clinical research trials and further strategies to achieve an augmented and efficient cure against solid tumors.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Células Asesinas Naturales , Neoplasias/patología , Inmunoterapia Adoptiva , Inmunoterapia
15.
Mol Biol Rep ; 50(9): 7145-7154, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37407802

RESUMEN

BACKGROUND: The current study was designed to highlight the effects of heterologous platelet-rich plasma (PRP) on deteriorated hepatic tissues and impaired glucose metabolism of alloxan-induced diabetic mice. METHODS: 30 male mice were divided into a control (CG), PRP (PG), diabetic (DG), and two treated groups (T1G and T2G). PG was given PRP treatment (0.5 ml/kg body weight) twice a week for four weeks. DG, T1G and T2G were given alloxan (150 mg/kg) to induce diabetes. After confirmation, PRP treatment was given to T1G and T2G for two and four weeks respectively while DG was left untreated. Upon completion of the said experimental period, liver samples were taken for histological and gene expression analyses. RESULTS: The study found that the liver tissue of the DG group showed signs of damage, including hepatocyte ballooning, sinusoid dilatation, and collagen deposition. However, these changes were significantly reduced in both T1G and T2G groups. The expression of several genes related to liver function was also affected, with upregulation of Fbp1 and Pklr, and downregulation of Pck1 in the DG group. PRP treatment restored Fbp1 expression and also increased the expression of glycolytic pathway genes Hk1 and Gck, as well as Wnt signalling pathway genes Wnt2, Wnt4, and Wnt9a in both treated groups. CONCLUSION: Current study revealed that heterologous PRP may partly alleviate high glucose levels in diabetics possibly by mediating glucose metabolism via inhibition of Wnt signalling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Plasma Rico en Plaquetas , Ratones , Masculino , Animales , Diabetes Mellitus Experimental/terapia , Aloxano , Hígado/metabolismo , Glucosa/metabolismo , Plasma Rico en Plaquetas/metabolismo
16.
Heliyon ; 9(7): e17610, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37455946

RESUMEN

A new series of alkaline earthides based on Cryptand [2.2.2] (C222) containing nine complexes is designed by carefully placing alkali metals and alkaline earth metals inside and outside the C222 complexant, respectively i.e., M1(C222)M2 (M1 = Li, Na, K; M2 = Be, Mg, Ca). The designed complexes are reasonably stable both electronically and thermodynamically, as revealed through their vertical ionization potentials (VIPs) and interaction energies, respectively. Moreover, the true alkaline earthide nature of the complexes is confirmed through NBO and FMO analyses showing the negative charges and HOMOs over the alkaline earth metals, respectively. The further validity of true earthide characteristic is represented graphically by the spectra of partial density of states (PDOS). HOMO-LUMO gaps of the compounds are also very small (from 2.23 to 2.83 eV) when compared with pure cage's (C222) H-L gap i.e., 5.63 eV. All these features award these complexes with very small values of transition energies (ΔE) ranging from 0.68 to 2.06 eV ultimately resulting in remarkably high hyperpolarizability values up to 2.7 × 105 au (for Na+(C222)Mg-). Furthermore, applying external electric field (EEF) on the complexes enhances hyperpolarizability further. A remarkable increase of 1000 folds has been seen when hyperpolarizability of K+(C222)Ca- is calculated after EEF application i.e., from 8.79 × 104 au to 2.48 × 107 au; when subjected to 0.001 au external electric field.

17.
ACS Omega ; 8(21): 18951-18963, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273631

RESUMEN

Quantum calculations were used to study UV-vis absorption properties and nonlinear optical characteristics of a variety of substituted dihydroazulene (DHA)/vinylheptafulvene (VHF) photoswitches. The absorption properties are substantially based on the position and nature of the substituent. In general, electron-donating groups cause red shifts compared to the parent compound. Any electron-withdrawing group, on the other hand, would generate a blue shift. Furthermore, the steric effect at some positions is accountable for the loss of planarity and, as a response, a decrease in electronic conjugation within the molecule, which in most cases result in blue shifts in maximum absorption. The purpose of this research is to investigate the influence of substitution at the seven-membered ring of the DHA/VHF system on the absorption spectra and nonlinear optical characteristics of dihydroazulene photoswitches. UV-vis spectra and hyperpolarizability are determined since a prospective photoswitch should have a minimum overlap of absorption spectra from both isomers. Furthermore, the differential in hyperpolarizability between DHA and VHF is critical for practical applications.

18.
Materials (Basel) ; 16(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176328

RESUMEN

Electronic and nonlinear optical properties of endohedral metallofullerenes are presented. The endohedral metallofullerenes contain transition metal encapsulated in inorganic fullerenes X12Y12 (X = B, Al & Y = N, P). The endohedral metallofullerenes (endo-TM@X12Y12) possess quite interesting geometric and electronic properties, which are the function of the nature of the atom and the size of fullerene. NBO charge and frontier molecular orbital analyses reveal that the transition metal encapsulated Al12N12 fullerenes (endo-TM@Al12N12) are true metalides when the transition metals are Ni, Cu and Zn. Endo-Cr@Al12N12 and endo-Co@Al12N12 are at the borderline between metalides and electrides with predominantly electride characteristics. The other members of the series are excess electron systems, which offer interesting electronic and nonlinear optical properties. The diversity of nature possessed by endo-TM@Al12N12 is not prevalent for other fullerenes. Endo-TM@Al12P12 are true metalides when the transition metals are (Cr-Zn). HOMO-LUMO gaps (EH-L) are reduced significantly for these endohedral metallofullerenes, with a maximum percent decrease in EH-L of up to 70%. Many complexes show odd-even oscillating behavior for EH-L and dipole moments. Odd electron species contain large dipole moments and small EH-L, whereas even electron systems have the opposite behavior. Despite the decrease in EH-L, these systems show high kinetic and thermodynamic stabilities. The encapsulation of transition metals is a highly exergonic process. These endo-TM@X12Y12 possess remarkable nonlinear optical response in which the first hyperpolarizability reaches up to 2.79 × 105 au for endo-V@Al12N12. This study helps in the comparative analysis of the potential nonlinear optical responses of electrides, metalides and other excess electron systems. In general, the potential nonlinear optical response of electrides is higher than metalides but lower than those of simple excess electron compounds. The higher non-linear optical response and interesting electronic characteristics of endo-TM@Al12N12 complexes may be promising contenders for potential NLO applications.

19.
J Phys Chem A ; 127(19): 4245-4258, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37155274

RESUMEN

Enantiomers have the same physical properties but different chemical properties due to the difference in the orientation of groups in space and thus Chiral discrimination is quite necessary, as an enantiomer of drug can have lethal effects. In this study, we used the CC2 cage for chiral discrimination of amino acids using density functional theory. The results indicated the physisorption of amino acids in the central cavity of the cage. Among the four selected amino acids, proline showed maximum interactions with the cage and maximum chiral discrimination energy is also observed in the case of proline that is 2.78 kcal/mol. Quantum theory of atoms in molecules and noncovalent interaction index analyses showed that the S enantiomer in each case has maximum interactions. The charge transfer between the analyte and surface is further studied through natural bond orbital analysis. It showed sensitivity of cage for both enantiomers, but a more pronounced effect is seen for S enantiomers. In frontier molecular orbital analysis, the least EH-L gap is observed in the case of R proline with a maximum charge transfer of -0.24 e-. Electron density difference analysis is carried out to analyze the pattern of the charge distribution. The partial density of state analysis is computed to understand the contribution of each enantiomer in overall density of the complexes. Our results show that S-CC2 porous organic cages have a good ability to differentiate between two enantiomers. S-CC2 porous organic cages efficiently differentiated the S enantiomer from the R enantiomers of selected amino acids.

20.
Molecules ; 28(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241800

RESUMEN

The toxicity of transition metals, including copper(II), manganese(II), iron(II), zinc(II), hexavalent chromium, and cobalt(II), at elevated concentrations presents a significant threat to living organisms. Thus, the development of efficient sensors capable of detecting these metals is of utmost importance. This study explores the utilization of two-dimensional nitrogenated holey graphene (C2N) nanosheet as a sensor for toxic transition metals. The C2N nanosheet's periodic shape and standard pore size render it well suited for adsorbing transition metals. The interaction energies between transition metals and C2N nanosheets were calculated in both gas and solvent phases and were found to primarily result from physisorption, except for manganese and iron which exhibited chemisorption. To assess the interactions, we employed NCI, SAPT0, and QTAIM analyses, as well as FMO and NBO analysis, to examine the electronic properties of the TM@C2N system. Our results indicated that the adsorption of copper and chromium significantly reduced the HOMO-LUMO energy gap of C2N and significantly increased its electrical conductivity, confirming the high sensitivity of C2N towards copper and chromium. The sensitivity test further confirmed the superior sensitivity and selectivity of C2N towards copper. These findings offer valuable insight into the design and development of sensors for the detection of toxic transition metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA