Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cells ; 11(21)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359811

RESUMEN

Human teeth are highly innervated organs that contain a variety of mesenchymal stem cell populations that could be used for cell-based regenerative therapies. Specific molecules are often used in these treatments to favorably modulate the function and fate of stem cells. Nogo-A, a key regulator of neuronal growth and differentiation, is already used in clinical tissue regeneration trials. While the functions of Nogo-A in neuronal tissues are extensively explored, its role in teeth still remains unknown. In this work, we first immunohistochemically analyzed the distribution of Nogo-A protein in the dental pulp of human teeth. Nogo-A is localized in a variety of cellular and structural components of the dental pulp, including odontoblasts, fibroblasts, neurons and vessels. We also cross-examined Nogo expression in the various pulp cell clusters in a single cell RNA sequencing dataset of human dental pulp, which showed high levels of expression in all cell clusters, including that of stem cells. We then assessed the role of Nogo-A on the fate of human dental pulp stem cells and their differentiation capacity in vitro. Using immunostaining, Alizarin Red S, Nile Red and Oil Red O staining we showed that Nogo-A delayed the differentiation of cultured dental pulp stem cells toward the osteogenic, adipogenic and neurogenic lineages, while addition of the blocking anti-Nogo-A antibody had opposite effects. These results were further confirmed by qRT-PCR, which demonstrated overexpression of genes involved in osteogenic (RUNX2, ALP, SP7/OSX), adipogenic (PPAR-γ2, LPL) and neurogenic (DCX, TUBB3, NEFL) differentiation in the presence of the anti-Nogo-A antibody. Conversely, the osteogenic and adipogenic genes were downregulated by Nogo-A. Taken together, our results show that the functions of Nogo-A are not restricted to neuronal cells but are extended to other cell populations, including dental pulp stem cells. We show that Nogo-A regulates their fates toward osteogenic, adipogenic and neurogenic differentiation, thus indicating its potential use in clinics.


Asunto(s)
Pulpa Dental , Osteogénesis , Humanos , Osteogénesis/fisiología , Diferenciación Celular , Adipogénesis , Células Madre
2.
J Alzheimers Dis ; 34(3): 589-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23271317

RESUMEN

Women experience dramatic changes in hormones, mood, and cognition through different periods of their reproductive lives, particularly during pregnancy and giving birth. While limited human studies of early pregnancy and motherhood showed alteration of cognitive function in later life, research conducted on rodents showed a persistent improvement of learning and memory performance in females with history of giving birth (primiparous or multiparous) compared to virgin controls (nulliparous). In this mini review, we will focus on the effect of early motherhood on cognitive function later in life, which would provide insight on how reproductive experiences influence women's health during aging.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Reproducción/fisiología , Factores de Edad , Animales , Femenino , Humanos , Aprendizaje/fisiología , Embarazo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA