Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(8): 813-823, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38811154

RESUMEN

Current therapeutic strategies for esophageal cancer (EC) patients have yielded limited improvements in survival rates. Recent research has highlighted the influence of drug metabolism enzymes on both drug response and EC development. Our study aims to identify specific drug metabolism enzymes regulated by histone acetylation and to elucidate its molecular and clinical features. CYP4F12 exhibited a notable upregulation subsequent to trichostatin A treatment as evidenced by RNA sequencing analysis conducted on the KYSE-150 cell line. The change in gene expression was associated with increased acetylation level of histone 3 K18 and K27 in the promoter. The regulation was dependent on p300. In silicon analysis of both The Cancer Genome Atlas esophageal carcinoma and GSE53624 dataset suggested a critical role of CYP4F12 in EC development, because CYP4F12 was downregulated in tumor tissues and predicted better disease-free survival. Gene ontology analysis has uncovered a robust correlation between CYP4F12 and processes related to cell migration, as well as its involvement in cytosine-mediated immune activities. Further investigation into the relationship between immune cells and CYP4F12 expression has indicated an increased level of B cell infiltration in samples with high CYP4F12 expression. CYP4F12 was also negatively correlated with the expression of inhibitory checkpoints. An accurate predictive nomogram model was established combining with clinical factors and CYP4F12 expression. In conclusion, CYP4F12 was crucial in EC development, and targeting CYP4F12 may improve the therapeutic efficacy of current treatment in EC patients. SIGNIFICANCE STATEMENT: CYP4F12 expression was downregulated in esophageal cancer (EC) patients and could be induced by trichostatin A. During EC development, CYP4F12 was linked to reduced cell migration and increased infiltration of B cells. CYP4F12 also is a biomarker as prognostic predictors and therapeutic guide in EC patients.


Asunto(s)
Neoplasias Esofágicas , Histonas , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Humanos , Acetilación , Histonas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ácidos Hidroxámicos/farmacología , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo
2.
Vaccines (Basel) ; 11(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37897022

RESUMEN

(1) Background and Purpose: Ebola virus (EBOV) is the causative agent of Ebola virus disease (EVD), which causes extremely high mortality and widespread epidemics. The only glycoprotein (GP) on the surface of EBOV particles is the key to mediating viral invasion into host cells. DNA vaccines for EBOV are in development, but their effectiveness is unclear. The lack of immune characteristics resides in antigenic MHC class II reactivity. (2) Methods: We selected MHC-II molecules from four human leukocyte antigen II (HLA-II) superfamilies with 98% population coverage and eight mouse H2-I alleles. IEDB, NetMHCIIpan, SYFPEITHI, and Rankpep were used to screen MHC-II-restricted epitopes with high affinity for EBOV GP. Further immunogenicity and conservation analyses were performed using VaxiJen and BLASTp, respectively. EpiDock was used to simulate molecular docking. Cluster analysis and binding affinity analysis of EBOV GP epitopes and selected MHC-II molecules were performed using data from NetMHCIIpan. The selective GP epitopes were verified by the enzyme-linked immunospot (ELISpot) assay using splenocytes of BALB/c (H2d), C3H, and C57 mice after DNA vaccine pVAX-GPEBO immunization. Subsequently, BALB/c mice were immunized with Protein-GPEBO, plasmid pVAX-GPEBO, and pVAX-LAMP/GPEBO, which encoded EBOV GP. The dominant epitopes of BALB/c (H-2-I-AdEd genotype) mice were verified by the enzyme-linked immunospot (ELISpot) assay. It is also used to evaluate and explore the advantages of pVAX-LAMP/GPEBO and the reasons behind them. (3) Results: Thirty-one HLA-II-restricted and 68 H2-I-restricted selective epitopes were confirmed to have high affinity, immunogenicity, and conservation. Nineteen selective epitopes have cross-species reactivity with good performance in MHC-II molecular docking. The ELISpot results showed that pVAX-GPEBO could induce a cellular immune response to the synthesized selective peptides. The better immunoprotection of the DNA vaccines pVAX-LAMP/GPEBO coincides with the enhancement of the MHC class II response. (4) Conclusions: Promising MHC-II-restricted candidate epitopes of EBOV GP were identified in humans and mice, which is of great significance for the development and evaluation of Ebola vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA