Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Food Chem ; 463(Pt 2): 141094, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39270496

RESUMEN

The effects of hydrogen sulfide (H2S) on chilling injury (CI), reactive oxygen species (ROS) metabolism, sugar metabolism, pentose phosphate pathway (PPP), and membrane lipid metabolism in loquat fruit throughout the refrigerated period were investigated in this study. The findings indicated that H2S application restrained the increase in internal browning (IB), malondialdehyde (MDA) content, and electrolyte leakage, while sustaining higher total phenolic and total flavonoid levels, and lower soluble quinone content in loquat fruit. Besides, H2S promoted antioxidant accumulation and increased antioxidant enzyme activities by the regulation of ROS metabolism, along with increasing fructose and glucose levels and reducing power by activating sugar metabolism and PPP. Furthermore, H2S treatment retarded the degradation of phospholipids and fatty acids in loquat fruit by modulating membrane lipid metabolism relevant enzyme activities. These findings indicated that H2S application mitigated CI in loquat fruit by alleviating oxidative stress and maintaining cell membrane structural integrity.

2.
Carbohydr Polym ; 340: 122259, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858019

RESUMEN

Our previous investigations have successfully identified the repeating structural units of EPS53, an exopolysaccharide derived from Streptococcus thermophilus XJ53 fermented milk, and substantiated its potential immunomodulatory properties. The present study further elucidated the structural characteristics of EPS53 and investigated the underlying mechanisms governing its in vitro immunoreactivity as well as its in vivo immunoreactivity. The results obtained from multi-detector high performance gel filtration chromatography revealed that EPS53 adopted a rigid rod conformation in aqueous solution, with the weight-average molecular weight of 1464 kDa, the number-average molecular weight of 694 kDa, and the polydispersity index of 2.11. Congo red experiment confirmed the absence of a triple helix conformation. Scanning electron microscopy showed that EPS53 displayed a three-dimensional fibrous structure covered with flakes. The in vitro findings indicated that EPS53 enhanced phagocytosis ability, reactive oxygen species (ROS) production, and cytokine levels of macrophages via the TLR4-mediated NF-κB/MAPK signaling pathways as confirmed by immunofluorescence staining experiments, inhibition blocking experiments, and Western blot assay. Additionally, the in vivo experiments demonstrated that EPS53 significantly increased macrophage and neutrophil number while enhancing NO and ROS levels in zebrafish larvae; thus, providing further evidence for the immunomodulatory efficacy of EPS53.


Asunto(s)
Fagocitosis , Polisacáridos Bacterianos , Streptococcus thermophilus , Pez Cebra , Animales , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Ratones , Células RAW 264.7 , Fagocitosis/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Citocinas/metabolismo , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Transducción de Señal/efectos de los fármacos
3.
World J Pediatr ; 20(9): 966-975, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38367140

RESUMEN

BACKGROUND: Diarrhea is a common complication of hematopoietic stem cell transplantation (HSCT) and is associated with substantial morbidity, but its etiology is often unknown. Etiologies of diarrhea in this population include infectious causes, chemotherapy- or medication-induced mucosal injury and graft-versus-host disease (GVHD). Distinguishing these potential causes of diarrhea is challenging since diarrheal symptoms are often multifactorial, and the etiologies often overlap in transplant patients. The objectives of this study were to evaluate whether the FilmArray gastrointestinal (GI) panel would increase diagnostic yield and the degree to which pre-transplantation colonization predicts post-transplantation infection. METHODS: From November 2019 to February 2021, a total of 158 patients undergoing HSCT were prospectively included in the study. Stool specimens were obtained from all HSCT recipients prior to conditioning therapy, 28 ± 7 days after transplantation and at any new episode of diarrhea. All stool samples were tested by the FilmArray GI panel and other clinical microbiological assays. RESULTS: The primary cause of post-transplantation diarrhea was infection (57/84, 67.86%), followed by medication (38/84, 45.24%) and GVHD (21/84, 25.00%). Ninety-five of 158 patients were colonized with at least one gastrointestinal pathogen before conditioning therapy, and the incidence of infectious diarrhea was significantly higher in colonized patients (47/95, 49.47%) than in non-colonized patients (10/63, 15.87%) (P < 0.001). Fourteen of 19 (73.68%) patients who were initially colonized with norovirus pre-transplantation developed a post-transplantation norovirus infection. Twenty-four of 62 (38.71%) patients colonized with Clostridium difficile developed a diarrheal infection. In addition, FilmArray GI panel testing improved the diagnostic yield by almost twofold in our study (55/92, 59.78% vs. 30/92, 32.61%). CONCLUSIONS: Our data show that more than half of pediatric patients who were admitted for HSCT were colonized with various gastrointestinal pathogens, and more than one-third of these pathogens were associated with post-transplantation diarrhea. In addition, the FilmArray GI panel can increase the detection rate of diarrheal pathogens in pediatric HSCT patients, but the panel needs to be optimized for pathogen species, and further studies assessing its clinical impact and cost-effectiveness in this specific patient population are also needed.


Asunto(s)
Diarrea , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Masculino , Femenino , Diarrea/microbiología , Diarrea/diagnóstico , Diarrea/etiología , Niño , Preescolar , Estudios Prospectivos , Adolescente , Reacción en Cadena de la Polimerasa Multiplex , Heces/microbiología , Heces/virología , Lactante , Enfermedad Injerto contra Huésped/diagnóstico
4.
Plant Physiol ; 194(2): 1075-1090, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37935624

RESUMEN

Tomato (Solanum lycopersicum) is a cold-sensitive crop but frequently experiences low-temperature stimuli. However, tomato responses to cold stress are still poorly understood. Our previous studies have shown that using wild tomato (Solanum habrochaites) as rootstock can significantly enhance the cold resistance of grafted seedlings, in which a high concentration of jasmonic acids (JAs) in scions exerts an important role, but the mechanism of JA accumulation remains unclear. Herein, we discovered that tomato SlWRKY50, a Group II WRKY transcription factor that is cold inducible, responds to cold stimuli and plays a key role in JA biosynthesis. SlWRKY50 directly bound to the promoter of tomato allene oxide synthase gene (SlAOS), and overexpressing SlWRKY50 improved tomato chilling resistance, which led to higher levels of Fv/Fm, antioxidative enzymes, SlAOS expression, and JA accumulation. SlWRKY50-silenced plants, however, exhibited an opposite trend. Moreover, diethyldithiocarbamate acid (a JA biosynthesis inhibitor) foliar treatment drastically reduced the cold tolerance of SlWRKY50-overexpression plants to wild-type levels. Importantly, SlMYC2, the key regulator of the JA signaling pathway, can control SlWRKY50 expression. Overall, our research indicates that SlWRKY50 promotes cold tolerance by controlling JA biosynthesis and that JA signaling mediates SlWRKY50 expression via transcriptional activation by SlMYC2. Thus, this contributes to the genetic knowledge necessary for developing cold-resistant tomato varieties.


Asunto(s)
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Solanum/fisiología , Ciclopentanos/metabolismo , Transducción de Señal/genética , Frío
5.
Theor Appl Genet ; 135(10): 3455-3468, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35963933

RESUMEN

KEY MESSAGE: The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular mapping. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway. Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3'5'H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.


Asunto(s)
Antocianinas , Capsicum , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 190(1): 576-591, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640121

RESUMEN

Plant mitochondrial fatty acid synthesis (mtFAS) appears to be important in photorespiration based on the reverse genetics research from Arabidopsis (Arabidopsis thaliana) in recent years, but its roles in plant development have not been completely explored. Here, we identified a tomato (Solanum lycopersicum) mutant, fern-like, which displays pleiotropic phenotypes including dwarfism, yellowing, curly leaves, and increased axillary buds. Positional cloning and genetic and heterozygous complementation tests revealed that the underlying gene FERN encodes a 3-hydroxyl-ACP dehydratase enzyme involved in mtFAS. FERN was causally involved in tomato morphogenesis by affecting photorespiration, energy supply, and the homeostasis of reactive oxygen species. Based on lipidome data, FERN and the mtFAS pathway may modulate tomato development by influencing mitochondrial membrane lipid composition and other lipid metabolic pathways. These findings provide important insights into the roles and importance of mtFAS in tomato development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA