Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Eur J Neurol ; : e16458, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254065

RESUMEN

BACKGROUND AND PURPOSE: The benefit of remote ischaemic conditioning (RIC) in acute moderate ischaemic stroke has been demonstrated by the Remote Ischaemic Conditioning for Acute Moderate Ischaemic Stroke (RICAMIS) study. This prespecified exploratory analysis aimed to determine whether there was a difference of RIC efficacy in anterior versus posterior circulation stroke based on RICAMIS data. METHODS: In this analysis, eligible patients presenting within 48 h of stroke onset were divided into two groups: anterior circulation stroke (ACS) and posterior circulation stroke (PCS) groups. The primary endpoint was an excellent functional outcome, defined as a modified Rankin Scale (mRS) score 0-1 at 90 days. RESULTS: In all, 1013 patients were included in the final analysis, including 642 with ACS and 371 with PCS. Compared with the control group, RIC was significantly associated with an increased proportion of mRS scores 0-1 within 90 days in the PCS group (unadjusted odds ratio 1.6, 95% confidence interval 1.0-2.4, p = 0.04; adjusted odds ratio 2.0, 95% confidence interval 1.2-3.3, p = 0.005), but not in the ACS group (p = 0.29). Similar results were found regarding secondary outcomes including mRS score 0-2 at 90 days, mRS distribution at 90 days and change in National Institutes of Health Stroke Scale score at day 12 from baseline. However, there was no significant interaction effect between stroke location and intervention on the primary outcome (pinteraction = 0.21). CONCLUSION: Amongst patients with acute PCS who are not candidates for reperfusion treatment, RIC may be associated with a higher probability of improved functional outcomes. These findings need to be validated in prospective trials.

2.
J Anim Sci Biotechnol ; 15(1): 120, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238062

RESUMEN

BACKGROUND: Magnolol (MAG) exhibits hepatoprotective activity, however, whether and how MAG regulates the gut microbiota to alleviate fatty liver hemorrhagic syndrome (FLHS) remains unclear. Therefore, we investigated the mechanism of MAG in FLHS laying hens with an emphasis on alterations in the gut-liver axis. We randomly divided 540 56-week-old Hy-line white laying hens with FLSH into 4 groups. The birds were fed a high-fat low-protein (HFLP) diet (CON) or HELP diets supplemented with 200, 400, and 600 mg/kg of MAG (M1, M2, and M3, respectively) for 9 weeks. RESULTS: Magnolol supplementation increased the laying rate and ameliorated hepatic damage and dysfunction by regulating lipid metabolism, improving intestinal barrier function, and shaping the gut microbiota and tryptophan metabolic profiles. Dietary MAG supplementation downregulated the expression of lipid synthesis genes and upregulated the expression of lipid transport genes at varying degrees. The intestinal barrier function was improved by 200 and 400 mg/kg of MAG supplementation, as evidenced by the increased villus height and mRNA expression of tight junction related genes. Microbiological profile information revealed that MAG changed the gut microbiota, especially by elevating the abundances of Lactobacillus, Faecalibacterium, and Butyricicoccus. Moreover, non-targeted metabolomic analysis showed that MAG significantly promoted tryptophan metabolites, which was positively correlated with the MAG-enriched gut microbiota. The increased tryptophan metabolites could activate aryl hydrocarbon receptor (AhR) and relieved hepatic inflammation and immune response evidenced by the downregulated the gene expression levels of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the liver. The fecal microbiota transplantation (FMT) experiments further confirmed that the hepatoprotective effect is likely mediated by MAG-altered gut microbiota and their metabolites. CONCLUSIONS: Magnolol can be an outstanding supplement for the prevention and mitigation of FLHS in laying hens by positively regulating lipid synthesis and transport metabolism, improving the intestinal barrier function, and relieving hepatic inflammation by reshaping the gut microbiota and metabolite profiles through gut microbiota-indole metabolite-hepatic AhR crosstalk. These findings elucidate the mechanisms by which MAG alleviates FLHS and provide a promising method for preventing liver diseases by modulating gut microbiota and their metabolites.

3.
Biomolecules ; 14(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199354

RESUMEN

As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.


Asunto(s)
Barrera Hematoencefálica , Humanos , Animales , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Neuronas/metabolismo , Células Endoteliales/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/fisiología , Transducción de Señal
4.
J Ethnopharmacol ; 335: 118694, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39147001

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY: This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS: Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS: Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS: Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Ratones Endogámicos BALB C , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Toxoplasma , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Toxoplasma/efectos de los fármacos , Femenino , Ratones , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/parasitología , Hígado/metabolismo , Hígado/patología , Toxoplasmosis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/parasitología , Coix/química
5.
Metabolites ; 14(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39195495

RESUMEN

Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.

6.
Research (Wash D C) ; 7: 0433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091635

RESUMEN

Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism. First, single-cell RNA sequencing, mitochondrial probe, transmission electron microscopy, and immunofluorescence staining showed stronger mitochondrial activity and increased mitophagy-related gene especially Prohibitin 2 (Phb2) expression at early-anagen HG compared to the telogen HG. Mitochondrial inner membrane receptor protein PHB2 binds to LC3 to initiate mitophagy. Second, molecular docking and functional studies revealed that PHB2-LC3 activates mitophagy to eliminate the damaged mitochondria in HG. RNA-seq, single-cell metabolism, immunofluorescence staining, and functional validation discovered that LC3 promotes GSH metabolism to supply energy for promoting HG proliferation. Third, transcriptomics analysis and immunofluorescence staining indicated that mitophagy was down-regulated in the aged compared to young-mouse HG. Activating mitophagy and GSH pathways through small-molecule administration can reactivate HG cell proliferation followed by hair regeneration in aged hair follicles. Our findings open up a new avenue for exploring autophagy that promotes hair regeneration and emphasizes the role of the self-elimination effect of mitophagy in controlling the proliferation of HG cells by regulating GSH metabolism.

7.
CNS Neurosci Ther ; 30(7): e14868, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39014552

RESUMEN

BACKGROUND: Systolic blood pressure (SBP) was a predictor of early neurological deterioration (END) in stroke. We performed a secondary analysis of ARAMIS trial to investigate whether baseline SBP affects the effect of dual antiplatelet versus intravenous alteplase on END. METHODS: This post hoc analysis included patients in the as-treated analysis set. According to SBP at admission, patients were divided into SBP ≥140 mmHg and SBP <140 mmHg subgroups. In each subgroup, patients were further classified into dual antiplatelet and intravenous alteplase treatment groups based on study drug actually received. Primary outcome was END, defined as an increase of ≥2 in the NIHSS score from baseline within 24 h. We investigated effect of dual antiplatelet vs intravenous alteplase on END in SBP subgroups and their interaction effect with subgroups. RESULTS: A total of 723 patients from as-treated analysis set were included: 344 were assigned into dual antiplatelet group and 379 into intravenous alteplase group. For primary outcome, there was more treatment effect of dual antiplatelet in SBP ≥140 mmHg subgroup (adjusted RD, -5.2%; 95% CI, -8.2% to -2.3%; p < 0.001) and no effect in SBP <140 mmHg subgroup (adjusted RD, -0.1%; 95% CI, -8.0% to 7.7%; p = 0.97), but no significant interaction between subgroups was found (adjusted p = 0.20). CONCLUSIONS: Among patients with minor nondisabling acute ischemic stroke, dual antiplatelet may be better than alteplase with respect to preventing END within 24 h when baseline SBP ≥140 mmHg.


Asunto(s)
Presión Sanguínea , Fibrinolíticos , Inhibidores de Agregación Plaquetaria , Accidente Cerebrovascular , Activador de Tejido Plasminógeno , Humanos , Masculino , Femenino , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Anciano , Activador de Tejido Plasminógeno/uso terapéutico , Activador de Tejido Plasminógeno/administración & dosificación , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/uso terapéutico , Fibrinolíticos/uso terapéutico , Fibrinolíticos/administración & dosificación , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Anciano de 80 o más Años , Método Doble Ciego , Accidente Cerebrovascular Isquémico/tratamiento farmacológico
8.
Food Funct ; 15(16): 8182-8199, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39027924

RESUMEN

Lactoferrin, a multifunctional iron-binding protein found in milk and other body fluids, possesses numerous biological activities. The functional activity of lactoferrin lies not only in its iron-binding capacity but also in the molecular mechanisms by which it can affect important chemical components in the host. However, the molecular mechanisms underlying these activities remain unelucidated. In this paper, we review the structure, properties, and contents of different lactoferrin milk sources. The different biological activities, namely antibacterial, antiviral, immunomodulatory, anti-inflammatory, bone regeneration, and improved metabolic disorder bioactivities, and the associated potential mechanisms of lactoferrin are summarized with the aim of providing a reference for the development of lactoferrin-related products.


Asunto(s)
Lactoferrina , Lactoferrina/farmacología , Lactoferrina/química , Humanos , Animales , Leche/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Antivirales/farmacología , Antivirales/química , Factores Inmunológicos/farmacología , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química
9.
Chemosphere ; 362: 142571, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876325

RESUMEN

Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.


Asunto(s)
Microbioma Gastrointestinal , Aceites Volátiles , Fenoles , Receptores de Hidrocarburo de Aril , Triptófano , Animales , Masculino , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Patos , Disruptores Endocrinos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Interleucina-22 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Aceites Volátiles/farmacología , Fenoles/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo
10.
BMC Urol ; 24(1): 128, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886739

RESUMEN

PURPOSE: The aim of our study was to investigate the comparative outcomes of five different energy types on surgical efficacy and postoperative recovery in patients with benign prostate hyperplasia. METHODS: The literature was systematically reviewed on December 1st, 2023, encompassing studies retrieved from PubMed, Embase, Web of Science, and The Cochrane Library databases that incorporated clinical studies of holmium laser enucleation of the prostate (HoLEP), Thulium:YAG laser enucleation of the prostate (ThuLEP), transurethral plasmakinetic enucleation of prostate (PKEP), diode laser enucleation of the prostate (DiLEP) and thulium fiber laser enucleation of the prostate (ThuFLEP) in the treatment of prostatic hyperplasia. Two independent reviewers extracted study data and conducted quality assessments using the Cochrane Collaboration's Risk of Bias tool and Newcastle-Ottawa Scale (NOS). Network meta-analysis (NMA) was employed to indirectly analyze the outcomes of endoscopic enucleation of the prostate (EEP) techniques. RESULTS: The study included a total of 38 studies, comprising 21 non-randomized controlled trials (nRCTs) and 17 randomized controlled trials (RCTs), incorporating five distinct techniques: holmium laser, Thulium:YAG laser, bipolar plasma, diode laser and thulium fiber laser. In comparing treatment durations, ThuLEP and HoLEP had shorter overall hospital stays than PKEP, while the enucleation time of ThuLEP and HoLEP was shorter than that of ThuFLEP. Moreover, the enucleation tissue weight of both thulium fiber laser and holmium laser was heavier than bipolar plasma. However, the analysis did not reveal any statistically significant variation in complications among the various types of enucleation. In postoperative follow-up, the IPSS at 3 months post-operation was superior in the Thulium:YAG laser group compared to the holmium laser group. The thulium fiber laser technique demonstrated significant advantages over other enucleation methods in terms of QoL and PVR at 12 months after surgery. CONCLUSION: Theoretical properties may vary among different energy sources; however, there are no discernible clinical differences in operation-related parameters, postoperative complications, and postoperative follow-up. Therefore, the choice of laser does not significantly impact the outcome. However, due to the limited number of included studies, future research should focus on larger sample sizes and multicenter investigations to further validate the findings of this study.


Asunto(s)
Terapia por Láser , Metaanálisis en Red , Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/cirugía , Resultado del Tratamiento , Terapia por Láser/métodos , Prostatectomía/métodos , Láseres de Estado Sólido/uso terapéutico
11.
Int J Biol Macromol ; 273(Pt 1): 132735, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825293

RESUMEN

Polysaccharides extracted from Hericium erinaceus (HEP) exhibit hepatoprotective activity in the alleviation of non-alcoholic fatty liver disease (NAFLD); however, the mechanisms underlying whether and how HEP regulation of the gut microbiota to alleviate liver-associated metabolic disorders are not well understood. This study used an aged laying hen model to explore the mechanisms through which HEP alleviates NAFLD, with a focus on regulatory function of HEP in the gut microbiome. The results showed that HEP ameliorated hepatic damage and metabolic disorders by improving intestinal barrier function and shaping the gut microbiota and tryptophan metabolic profiles. HEP increased the abundance of Lactobacillus and certain tryptophan metabolites, including indole-3-carboxylic acid, kynurenic acid, and tryptamine in the cecum. These metabolites upregulated the expression of ZO-1 and Occludin by activating the AhR and restoring the intestinal barrier integrity. The increased intestinal barrier functions decreased LPS transferring from the intestine to the liver, inhibited hepatic LPS/TLR4/MyD88/NF-κB pathway activation, and reduced hepatic inflammatory response and apoptosis. Fecal microbiota transplantation experiments further confirmed that the hepatoprotective effect is likely mediated by HEP-altered gut microbiota and their metabolites. Overall, dietary HEP could ameliorate the hepatic damage and metabolic disorders of NAFLD through regulating the "gut-liver" axis.


Asunto(s)
Pollos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Polisacáridos , Triptófano , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/química , Femenino , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología
12.
Environ Toxicol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717048

RESUMEN

BACKGROUND: Gastric cancer (GC) is a prevalent malignant tumor of the gastrointestinal (GI) system. However, the lack of reliable biomarkers has made its diagnosis, prognosis, and treatment challenging. Immunogenic cell death (ICD) is a type of programmed cell death that is strongly related to the immune system. However, its function in GC requires further investigation. METHOD: We used multi-omics and multi-angle approaches to comprehensively explore the prognostic features of ICD in patients with stomach adenocarcinoma (STAD). At the single-cell level, we screened genes associated with ICD at the transcriptome level, selected prognostic genes related to ICD using weighted gene co-expression network analysis (WGCNA) and machine learning, and constructed a prognostic model. In addition, we constructed nomograms that incorporated pertinent clinical features and provided effective tools for prognostic prediction in clinical settings. We also investigated the sensitivity of the risk subgroups to both immunotherapy and drugs. Finally, in addition to quantitative real-time polymerase chain reaction, immunofluorescence was used to validate the expression of ICD-linked genes. RESULTS: Based on single-cell and transcriptome WGCNA analyses, we identified 34 ICD-related genes, of which 11 were related to prognosis. We established a prognostic model using the least absolute shrinkage and selection operator (LASSO) algorithm and identified dissimilarities in overall survival (OS) and progression-free survival (PFS) in risk subgroups. The nomograms associated with the ICD-related signature (ICDRS) demonstrated a good predictive value for clinical applications. Moreover, we detected changes in the tumor microenvironment (TME), including biological functions, mutation landscapes, and immune cell infiltration, between the high- and low-risk groups. CONCLUSION: We constructed an ICD-related prognostic model that incorporated features related to cell death. This model can serve as a useful tool for predicting the prognosis of GC, targeted prevention, and personalized medicine.

13.
J Adv Res ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718895

RESUMEN

INTRODUCTION: Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions. OBJECTIVE: To explore how hair follicles and blood vessels interact to regulate angiogenesis and hair regeneration during aging. METHODS: Single-cell RNA-sequencing (scRNA-seq) analyses were used to identify the declined ability of dermal papilla (DP) and endothelial cells (ECs) during aging. CellChat and CellCall were performed to investigate interaction between DP and ECs. Single-cell metabolism (scMetabolism) analysis and iPATH were applied to analyze downstream metabolites in DP and ECs. Hair-plucking model and mouse cell organoid model were used for functional studies. RESULTS: During aging, distance and interaction between DP and ECs are decreased. DP interacts with ECs, with decreased EDN1-EDNRA signaling from ECs to DP and CTF1-IL6ST signaling from DP to ECs during aging. ECs-secreted EDN1 binds to DP-expressed EDNRA which enhances Taurine (TA) metabolism to promote hair regeneration. DP-emitted CTF1 binds to ECs-expressed IL6ST which activates alpha-linolenic acid (ALA) metabolism to promote angiogenesis. Activated EDN1-EDNRA-TA signaling promotes hair regeneration in aged mouse skin and in organoid cultures, and increased CTF1-IL6ST-ALA signaling also promotes angiogenesis in aged mouse skin and organoid cultures. CONCLUSIONS: Our finding reveals reciprocal interactions between ECs and DP. ECs releases EDN1 sensed by DP to activate TA metabolism which induces hair regeneration, while DP emits CTF1 signal received by ECs to enhance ALA metabolism which promotes angiogenesis. Our study provides new insights into mutualistic cellular crosstalk between hair follicles and blood vessels, and identifies novel signaling contributing to the interactions of hair follicles and blood vessels in normal and aged skin.

14.
Poult Sci ; 103(7): 103810, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749108

RESUMEN

Little information is available on the effect of Hericium erinaceus polysaccharides (HEP) on laying hens, especially on improving liver and ovarian health and function. Therefore, this study was conducted to investigate the impacts of HEP on liver and ovarian function to delay the decline in the laying performance of aged hens. A total of 360 fifty-eight-wk-old laying hens were randomly allocated to 4 treatments, with 6 replicates of 15 birds each. After 2 wk of adaptation, the birds were fed basal diet (CON) or basal diets supplemented with 250, 500, and 750 mg/kg of HEP (HEP250, HEP500, and HEP 750, respectively) for 12 wk. The results showed that, compared with CON, hens fed HEP had significantly increased laying performance (P < 0.05) and promoted follicle development, as evidenced by the increased numbers of hierarchical follicles, small follicles, and total follicles (P < 0.05). Birds fed 500 mg/kg of HEP improved the liver function by increasing T-AOC activity (P < 0.05) and decreasing hepatic oxidative stress and inflammatory responses (inflammatory cell infiltration) caused by aging. The lipid metabolism was improved, and yolk precursor synthesis was promoted in the liver of HEP-treated laying hens by upregulating the mRNA expression of FAS, MTTP, PPAR-α, APOVLDL-Ⅱ, and VTG-Ⅱ (P < 0.05). In addition, HEP significantly decreased ovarian inflammation by regulating the mRNA levels of NF-κB, IL-1ß, IL-6, and TNF-α (P < 0.05). As a result, the contents of E2, LH, and FSH in serum and the gene expression of ERα of the liver and FSHR of the ovary increased in HEP-treated hens (P < 0.05). In conclusion, dietary HEP supplementation exhibited potential hepatic and ovarian protective effects, thereby increasing the laying performance of aged hens by enhancing reproductive hormone secretion hormone secretion and promoting yolk precursor synthesis and follicle development via the liver-blood-ovary axis. The optimal supplementation level of HEP in aged hens was 500 mg/kg.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Hígado , Animales , Pollos/fisiología , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Folículo Ovárico/efectos de los fármacos , Suplementos Dietéticos/análisis , Yema de Huevo/química , Distribución Aleatoria , Ovario/efectos de los fármacos , Ovario/metabolismo , Relación Dosis-Respuesta a Droga , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/administración & dosificación , Polisacáridos/farmacología , Polisacáridos/administración & dosificación , Reproducción/efectos de los fármacos
15.
Analyst ; 149(9): 2629-2636, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563459

RESUMEN

Cell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly located and identified via the CA module-based cell detection network, and then associated and tracked via a cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and 65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features, which could further help in understanding the complicated and diverse cell migration processes.


Asunto(s)
Algoritmos , Movimiento Celular , Rastreo Celular , Rastreo Celular/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
16.
Front Genet ; 15: 1343687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343693

RESUMEN

Background: The association between MTHFR gene polymorphisms (C677T and A1298C) and prostate cancer risk remains controversial. Methods: Two independent researchers searched the PubMed, Embase, Cochrane and Web of Science databases for all papers published up to 12/19/2023 and used various genetic models to evaluate the relationship between MTHFR polymorphisms and prostate cancer risk. Results: The meta-analysis included 26 case‒control studies with a total of 12,455 cases and 13,900 controls with the C677T polymorphism and 6,396 cases and 8,913 controls with the A1298C polymorphism. Overall, no significant association was found between the MTHFR gene polymorphisms and prostate cancer risk. However, the C677T polymorphism was associated with reduced prostate cancer risk in the Asian population (T allele vs. C allele: OR = 0.759, 95% CI 0.669-0.861, p < 0.001; TT + CT vs. CC: OR = 0.720, 95% CI 0.638-0.812, p < 0.001; TT vs. CC + CT: OR = 0.719, 95% CI 0.617-0.838, p < 0.001; TT vs. CC: OR = 0.620, 95% CI 0.522-0.737, p < 0.001); however, the A1298C polymorphism was associated with an increased risk in the mixed race group from the United States (CC + AC vs. AA: OR = 1.464, 95% CI 1.052-2.037, p = 0.024; AC vs. AA: OR = 1.615, 95% CI 1.037-2.514, p = 0.034). Conclusion: The meta-analysis suggested that MTHFR gene polymorphisms (C677T and A1298C) may have different effects on prostate cancer risk in specific populations.

17.
Foods ; 13(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201179

RESUMEN

Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.

18.
Transl Stroke Res ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238620

RESUMEN

To date, the benefit of intravenous thrombolysis is confined to within 4.5 h of onset for acute ischemic stroke (AIS) without advanced neuroimaging selection. The current trial aimed to investigate the safety and efficacy of intravenous tenecteplase (TNK) plus Dl-3-n-Butylphthalide (NBP) in AIS within 4.5 to 6 h of onset. In this randomized, multicenter trial, eligible AIS patients were randomly assigned to receive intravenous TNK (0.25 mg/kg) plus NBP or NBP within 4.5 to 6 h of onset. The primary endpoint was symptomatic intracranial hemorrhage (sICH). Secondary endpoints included excellent functional outcome defined as a modified Rankin Scale score of 0 to 1 at 90 days. 100 patients diagnosed by non-contrast CT (NCCT) were enrolled, including 50 in TNK group and 50 in control group. sICH occurred in 2.0% (1/50) in TNK group and 0.0% (0/49) in control group with no difference (unadjusted P = 0.998). The proportion of excellent functional outcome was 77.6% (38/49) in TNK group and 69.4% (34/49) in control group with non-significance (absolute difference 8.2%, P = 0.36). A significant decrease in NIHSS score at 24 h (P = 0.004) and more early neurological improvement (20.4% vs 4.1%; P = 0.026) was observed in TNK vs control group, but there was no difference in other secondary outcomes. This phase 2 study suggests that intravenous TNK with adjuvant NBP seems safe, feasible and may improve early neurological function in AIS patients within 4.5 to 6 h of symptom onset selected using NCCT.Clinical Trials Registration: This trial was registered with ClinicalTrials.gov (NCT05189509).

19.
Small ; 20(23): e2308847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174599

RESUMEN

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.

20.
Adv Sci (Weinh) ; 11(4): e2305383, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037253

RESUMEN

Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+ , Zn2+, and Hg2+ ) acetate salts and didodecyldimethylammonium (DDA+ ) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m-2 , current efficiency of 65.48 cd A-1 , external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The "organic-inorganic" hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA