Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Angew Chem Int Ed Engl ; : e202412222, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106271

RESUMEN

In recent years, sodium-ion batteries (SIBs) have attracted a lot of attention and are considered an ideal alternative to lithium-ion batteries (LIBs). The hard carbon (HC) anode in SIBs presents a unique challenge for studying the formation process of the solid electrolyte interphase (SEI) during initial cycling, owing to its distinctive porous structure. This study employs a combination of ultrasonic scanning techniques and differential electrochemical mass spectrometry to conduct an in-depth analysis of the two-dimensional distribution and composition of gases during the formation process. The findings reveal distinct gas evolution behaviors in SIBs compared to LIBs during formation. Notably, significant gas evolution is observed during the discharge phase of the formation cycle in SIBs, with higher discharge rates leading to increased gas evolution rates. This phenomenon is likely attributed to the adsorption of CO2 gas by the abundant pores in HC, followed by desorption during discharge. Furthermore, the study demonstrates that the addition of 5A molecular sieves, which competitively adsorb gases, effectively reduces gas adsorption on the anode during formation, thereby significantly enhancing battery performance. This research elucidates the gas adsorption and desorption behavior at the battery interface, providing new insights into the SEI formation process in SIBs.

2.
Haematologica ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113656

RESUMEN

Patients with chronic lymphocytic leukemia (CLL) respond well to initial treatment with the Bcell lymphoma 2 (BCL2) inhibitor venetoclax. Upon relapse, they often retain sensitivity to BCL2 targeting, but durability of response remains a concern. We hypothesize that targeting both BCL2 and B-cell lymphoma-extra large (BCLXL) will be a successful strategy to treat CLL, including for patients who relapse on venetoclax. To test this hypothesis, we conducted a pre-clinical investigation of LP-118, a highly potent inhibitor of BCL2 with moderate BCLXL inhibition to minimize platelet toxicity. This study demonstrated that LP-118 induces efficient BAK activation, cytochrome C release, and apoptosis in both venetoclax naïve and resistant CLL cells. Significantly, LP-118 is effective in cell lines expressing the BCL2 G101V mutation and in cells expressing BCLXL but lacking BCL2 dependence. Using an immunocompetent mouse model, Eµ-TCL1, LP-118 demonstrates low platelet toxicity, which hampered earlier BCLXL inhibitors. Finally, LP-118 in the RS4;11 and OSU-CLL xenograft models results in decreases in tumor burden and survival advantage, respectively. These results provide a mechanistic rationale for the evaluation of LP-118 for the treatment of venetoclax responsive and relapsed CLL.

3.
J Acoust Soc Am ; 156(2): 1058-1069, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136636

RESUMEN

In this paper, an ultrasound beamforming method for plane wave (PW) imaging based on modified sidelobe blanking (MSLB) is proposed to improve image resolution and contrast ratio (CR). In this framework, PWs from various angles were designed to create main and auxiliary beamformer signals. Specifically, the PW signals from all angles were first coherently combined to serve as the main beamformer output signals. To prevent excessive clutter and noise, output signals in the main beamformer were weighted by the generalized coherence factor. Subsequently, the PW signals were split into positive and negative angles to perform a subtraction, creating the auxiliary beamformer. Finally, signals in the main beamformer were compared with the signals in the auxiliary beamformer point by point to further eliminate the noises and clutters. Compared with the delay and sum, full width at half maximum of the MSLB for point targets was reduced by an average of 54.17% and 51.65% in simulations and experiments, respectively; and the corresponding CR was improved by 55.38% and 18.40% on average. The MSLB method provided better imaging quality in human carotid arteries. In conclusion, the proposed method can effectively improve image resolution and CR with low computational complexity.

4.
J Environ Manage ; 365: 121638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959766

RESUMEN

In the sludge dewatering process, a formidable challenge arises due to the robust interactions between extracellular polymeric substances (EPS) and bound water. This study introduces a novel, synergistic conditioning method that combines iron (Fe2+)/peroxymonosulfate (PMS) and polyacrylamide (PAM) to significantly enhance sludge dewatering efficiency. The application of the Fe2+/PMS-PAM conditioning method led to a substantial reduction in specific filtration resistance (SFR) by 82.75% and capillary suction time (CST) by 80.44%, marking a considerable improvement in dewatering performance. Comprehensive analyses revealed that pre-oxidation with Fe2+/PMS in the Fe2+/PMS-PAM process effectively degraded EPS, facilitating the release of bound water. Subsequently, PAM enhanced the flocculation of fine sludge particles resulting from the advanced oxidation processes (AOPs). Furthermore, analysis based on the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated shifts in interaction energies, highlighting the breakdown of energy barriers within the sludge and a transition in surface characteristics from hydrophilic (3.79 mJ m-2) to hydrophobic (-61.86 mJ m-2). This shift promoted the spontaneous aggregation of sludge particles. The innovative use of the Flory-Huggins theory provided insights into the sludge filtration mechanism from a chemical potential perspective, linking these changes to SFR. The introduction of Fe2+/PMS-PAM conditioning disrupted the uniformity of the EPS-formed gel layer, significantly reducing the chemical potential difference between the permeate and the water in the gel layer, leading to a lower SFR and enhanced dewatering performance. This thermodynamic approach significantly enhances our understanding of sludge dewatering and conditioning. These findings represent a paradigm shift, offering innovative strategies for sludge treatment and expanding our comprehension of dewatering and conditioning techniques.


Asunto(s)
Resinas Acrílicas , Hierro , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Hierro/química , Resinas Acrílicas/química , Eliminación de Residuos Líquidos/métodos , Floculación , Peróxidos/química , Oxidación-Reducción , Filtración
5.
Artículo en Inglés | MEDLINE | ID: mdl-38995704

RESUMEN

The potential benefits of automatic radiology report generation, such as reducing misdiagnosis rates and enhancing clinical diagnosis efficiency, are significant. However, existing data-driven methods lack essential medical prior knowledge, which hampers their performance. Moreover, establishing global correspondences between radiology images and related reports, while achieving local alignments between images correlated with prior knowledge and text, remains a challenging task. To address these shortcomings, we introduce a novel Eye Gaze Guided Cross-modal Alignment Network (EGGCA-Net) for generating accurate medical reports. Our approach incorporates prior knowledge from radiologists' Eye Gaze Region (EGR) to refine the fidelity and comprehensibility of report generation. Specifically, we design a Dual Fine-Grained Branch (DFGB) and a Multi-Task Branch (MTB) to collaboratively ensure the alignment of visual and textual semantics across multiple levels. To establish fine-grained alignment between EGR-related images and sentences, we introduce the Sentence Fine-grained Prototype Module (SFPM) within DFGB to capture cross-modal information at different levels. Additionally, to learn the alignment of EGR-related image topics, we introduce the Multi-task Feature Fusion Module (MFFM) within MTB to refine the encoder output information. Finally, a specifically designed label matching mechanism is designed to generate reports that are consistent with the anticipated disease states. The experimental outcomes indicate that the introduced methodology surpasses previous advanced techniques, yielding enhanced performance on two extensively used benchmark datasets: Open-i and MIMIC-CXR.

6.
Sci Data ; 11(1): 725, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956385

RESUMEN

Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.


Asunto(s)
Cromatina , Células Madre Pluripotentes , Análisis de la Célula Individual , Teratoma , Humanos , Teratoma/genética , Teratoma/patología , Células Madre Pluripotentes/metabolismo , Linaje de la Célula , Factores de Transcripción/genética
7.
Ultrasound Med Biol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043483

RESUMEN

OBJECTIVE: This paper proposes an ultrasound imaging algorithm based on sub-beamformer and multi-apodization with cross-correlation (SUB-MAX), aiming to achieve high resolution close to the minimum variance (MV) beamforming with low complexity and to enhance image contrast while maintaining background quality. METHODS: The output of two (N/2)-element DAS beamformers with asymmetric phase centers is subtracted, resulting in a large drop in the main-lobe amplitude, while the sidelobe maintains a relatively high amplitude level. Inspired by this characteristic, the coefficients with opposite trends compared with the subtracted output are obtained and fused with the normalized cross-correlation (NCC) weighting matrix acquired by using multi-pair received apodization, the proposed SUB-MAX obtains a new weighting matrix to weight the output of the DAS beamformer. RESULTS: For ats_wire point targets, the average full-width at half-maximum (FWHM) of SUB-MAX compared with DAS, DMAS, CF, and MAX decreases by 52.7%, 43.5%, 33.3%, and 52.7%, respectively. For geabr_0 cysts, the average contrast ratio (CR) of SUB-MAX compared with DAS, MV, DMAS, and CF increases by 57.7%, 86.8%, 2.5%, and 14.4%, respectively. Experiments on rat_tumor dataset also indicate that SUB-MAX has a superior comprehensive imaging performance. CONCLUSION: The experimental results indicate that the superior comprehensive imaging performance of the proposed SUB-MAX is expected to be suitable for real-time imaging systems due to its non-reliance on covariance matrix inversion.

8.
New Phytol ; 243(5): 1966-1979, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970455

RESUMEN

The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.


Asunto(s)
Biodiversidad , Cationes , Luz , Nitrógeno , Nitrógeno/metabolismo , Cationes/metabolismo , Suelo/química , Pradera , Plantas/metabolismo , Plantas/efectos de la radiación , Plantas/efectos de los fármacos
9.
J Cancer Res Clin Oncol ; 150(7): 362, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052109

RESUMEN

BACKGROUND: Skin Cutaneous Melanoma (SKCM) is a highly aggressive malignant tumor with a significant increase in mortality upon metastasis. The molecular mechanisms driving melanoma progression remain largely unclear. Recent studies have highlighted the importance of epigenetic alterations, especially DNA methylation, in melanoma development. This study aims to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) in genome-wide profiles between primary and metastatic melanoma. METHODS: Gene expression profiling datasets GSE8401 and gene methylation profiling datasets GSE86355 were collected from the GEO database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were systematically identified. Integration of DEGs and DMGs yielded a set of MeDEGs, which subsequently underwent functional enrichment analysis. The protein-protein interaction (PPI) network was constructed using STRING and visualized using Cytoscape software. Survival analysis was used to select prognostic hub genes. In addition, 37 SKCM and 37 normal skin tissues from the First Affiliated Hospital of Soochow University (FAHSU) were collected for immunohistochemical (IHC) staining and evaluation. Furthermore, DNA methylation patterns of CDC6 were analyzed. To validate these findings, SKCM cell cultures were utilized to elucidate the expression and behavioral characteristics of CDC6. Additionally, gene set enrichment analysis (GSEA) and immune infiltration analysis were conducted for CDC6. RESULTS: In our study, we discovered 120 hypomethylated-upregulated genes and 212 hypermethylated-downregulated genes. The hypomethylated-upregulated genes were notably associated with biological processes such as spindle assembly checkpoint signaling, mitotic spindle assembly, and negative regulation of mitotic metaphase/anaphase transition. Our pathway analysis revealed significant enrichment in pathways related to dilated cardiomyopathy, amino sugar metabolism, progesterone-mediated oocyte maturation, and chemical carcinogenesis. Conversely, hypermethylated-downregulated genes were found to be enriched in processes like epidermis development, keratinocyte differentiation, and skin development. Additionally, pathway analysis highlighted associations with estrogen signaling, Staphylococcus aureus infection, axon guidance, and arachidonic acid metabolism. Following the establishment of PPI networks and survival analysis, we identified 11 prognostic hub genes: CCNA2, CDC6, CDCA3, CKS2, DTL, HJURP, KRT5, KRT14, KRT15, KRT16, and NEK2. Notably, among the 11 hub genes, our findings indicate that CDC6 plays a pivotal role in enhancing the proliferation, migration, and invasion capabilities of melanoma cells in vitro. CONCLUSIONS: Our comprehensive genomic analyses reveal that genes with aberrant methylation exhibit differential expression during the transition from primary to metastatic melanoma. The identified genes, especially CDC6, which plays a crucial role in enhancing melanoma cell proliferation, migration, and invasion, provide valuable insights into potential methylation-based biomarkers. These findings could contribute significantly to advancing precision medicine in SKCM.


Asunto(s)
Proteínas de Ciclo Celular , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/mortalidad , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pronóstico , Biomarcadores de Tumor/genética , Melanoma Cutáneo Maligno , Mapas de Interacción de Proteínas/genética , Femenino , Proteínas Nucleares
10.
ACS Synth Biol ; 13(8): 2335-2346, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012160

RESUMEN

Developing more robust and productive industrial yeast is crucial for high-efficiency biomanufacturing. However, the challenges posed by the long time required and the low abundance of mutations generated through genomewide evolutionary engineering hinder the development and optimization of desired hosts for industrial applications. To address these issues, we present a novel solution called the Genomewide Evolution-based CRISPR/Cas with Donor-free (GEbCD) system, in which nonhomologous-end-joining (NHEJ) repair can accelerate the acquisition of highly abundant yeast mutants. Together with modified rad52 of the DNA double-strand break repair in Saccharomyces cerevisiae, a hypermutation host was obtained with a 400-fold enhanced mutation ability. Under multiple environmental stresses the system could rapidly generate millions of mutants in a few rounds of iterative evolution. Using high-throughput screening, an industrial S. cerevisiae SISc-Δrad52-G4-72 (G4-72) was obtained that is strongly robust and has higher productivity. G4-72 grew stably and produced ethanol efficiently in multiple-stress environments, e.g. high temperature and high osmosis. In a pilot-scale fermentation with G4-72, the fermentation temperature was elevated by 8 °C and ethanol production was increased by 6.9% under the multiple stresses posed by the industrial fermentation substrate. Overall, the GEbCD system presents a powerful tool to rapidly generate abundant mutants and desired hosts, and offers a novel strategy for optimizing microbial chassis with regard to demands posed in industrial applications.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Genoma Fúngico/genética , Mutación , Reparación del ADN por Unión de Extremidades/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Microbiología Industrial/métodos , Etanol/metabolismo , Roturas del ADN de Doble Cadena , Evolución Molecular Dirigida/métodos
11.
Biomed Pharmacother ; 176: 116937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870632

RESUMEN

The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.


Asunto(s)
Anestésicos por Inhalación , Complejo Nuclear Basolateral , Estado de Conciencia , Núcleo Dorsal del Rafe , Sevoflurano , Sevoflurano/farmacología , Animales , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Estado de Conciencia/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Serotonina/metabolismo , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Receptor de Serotonina 5-HT1A/metabolismo , Optogenética
12.
Nat Mach Intell ; 6(4): 449-460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38855263

RESUMEN

The 5' UTR, a regulatory region at the beginning of an mRNA molecule, plays a crucial role in regulating the translation process and impacts the protein expression level. Language models have showcased their effectiveness in decoding the functions of protein and genome sequences. Here, we introduced a language model for 5' UTR, which we refer to as the UTR-LM. The UTR-LM is pre-trained on endogenous 5' UTRs from multiple species and is further augmented with supervised information including secondary structure and minimum free energy. We fine-tuned the UTR-LM in a variety of downstream tasks. The model outperformed the best known benchmark by up to 5% for predicting the Mean Ribosome Loading, and by up to 8% for predicting the Translation Efficiency and the mRNA Expression Level. The model also applies to identifying unannotated Internal Ribosome Entry Sites within the untranslated region and improves the AUPR from 0.37 to 0.52 compared to the best baseline. Further, we designed a library of 211 novel 5' UTRs with high predicted values of translation efficiency and evaluated them via a wet-lab assay. Experiment results confirmed that our top designs achieved a 32.5% increase in protein production level relative to well-established 5' UTR optimized for therapeutics.

13.
J Org Chem ; 89(12): 8656-8667, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38831644

RESUMEN

The nucleophilic ring-opening of aziridine derivatives provides an important synthetic tool for the preparation of various ß-functionalized amines. Amines as nucleophiles are employed to prepare synthetically useful 1,2-diamines in the presence of various catalysts or activators. Herein, the B2(OH)4-mediated reductive ring-opening transformation of N-tosyl aziridines by nitroarenes was developed. This aqueous protocol employed nitroarenes as cheap and readily available amino sources and proceeds under external catalyst-free conditions. Control experiments and DFT calculations pointed to the in situ reduction of nitroarenes to aryl amines via N-aryl boramidic acid (E) and an SN1-type ring-opening of N-tosylaziridines by the resultant aryl amines with high regioselectivity.

14.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915524

RESUMEN

Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers1-4. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored. Here, we explore these effects using whole-genome synthesis, multiplexed directed evolution, and genome-transcriptome-translatome-proteome co-profiling on multiple recoded genomes. Using this information, we assemble a synthetic Escherichia coli genome in seven sections using only 57 codons to encode proteins. By discovering the rules responsible for the lethality of synonymous recoding and developing a data-driven multi-omics-based genome construction workflow that troubleshoots synthetic genomes, we overcome the lethal effects of 62,007 synonymous codon swaps and 11,108 additional genomic edits. We show that synonymous recoding induces transcriptional noise including new antisense RNAs, leading to drastic transcriptome and proteome perturbation. As the elimination of select codons from an organism's genetic code results in the widespread appearance of cryptic promoters, we show that synonymous codon choice may naturally evolve to minimize transcriptional noise. Our work provides the first genome-scale description of how synonymous codon changes influence organismal fitness and paves the way for the construction of functional genomes that provide genetic firewalls from natural ecosystems and safely produce biopolymers, drugs, and enzymes with an expanded chemistry.

15.
Toxicology ; 506: 153864, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871208

RESUMEN

Mixed lineage kinase domain-like protein (MLKL) is identified as the terminal executor of necroptosis. However, its role in acute alcoholic liver injury remains unclear. This study elucidates that MLKL can contribute to acute alcoholic liver injury independently of necroptosis. Although the expression of MLKL was upregulated, no significant increase in its phosphorylation or membrane translocation was observed in the liver tissues of mice treated with ethanol. This finding confirms that alcohol intake does not induce necroptosis in mouse liver tissue. Additionally, the deletion of Mlkl resulted in the downregulation of NLRP3 expression, which subsequently inhibited the activation of the NLRP3 inflammasome and the ensuing inflammatory response, thereby effectively mitigating liver injury induced by acute alcohol consumption. The knockout of Nlrp3 did not affect the expression of MLKL, further confirming that MLKL acts upstream of NLRP3. Mechanistically, inhibiting the nuclear translocation of MLKL reduced the nuclear entry of p65, the principal transcriptional regulator of NLRP3, thereby limiting the transcription of Nlrp3 mRNA and subsequent NLRP3 expression. Overall, this study unveils a novel mechanism of MLKL regulates the activation of NLRP3 inflammasomes in a necroptosis independent way in acute alcoholic liver injury.


Asunto(s)
Etanol , Inflamasomas , Hepatopatías Alcohólicas , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Quinasas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Inflamasomas/metabolismo , Masculino , Ratones , Etanol/toxicidad , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Necroptosis/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo
16.
Neurotox Res ; 42(4): 30, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884699

RESUMEN

Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.


Asunto(s)
Hipocampo , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Polietilenglicoles , Regulación hacia Arriba , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Polietilenglicoles/toxicidad , Polietilenglicoles/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
17.
PeerJ ; 12: e17424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827279

RESUMEN

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Asunto(s)
Biodegradación Ambiental , Fenoles , Microbiología del Suelo , Contaminantes del Suelo , Fenoles/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Ecosistema , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
18.
Int J Biol Macromol ; 275(Pt 2): 133373, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945717

RESUMEN

In this work, a Z-scheme heterostructured BiOCOOH/O-gC3N4 material was synthesized and immobilized on chitosan (CTS) to obtain the BiOCOOH/O-gC3N4/CTS photocatalytic material for photocatalytic degradation of oxytetracycline hydrochloride (CTC).Our findings indicate that the composite material BiOCOOH/O-gC3N4, as well as the BiOCOOH/O-gC3N4/CTS composite membrane, displayed a significantly higher efficiency in photocatalytic degradation of CTC compared to BiOCOOH alone, owing to the synergistic effect of adsorption and photocatalysis. Following four cycles of use, the composite material retained around 96 % of its initial photocatalytic degradation activity. The addition of CTS in the photocatalytic material resolved issues such as aggregation and difficult recovery commonly encountered with powder materials, thereby facilitating effective collision between the photocatalytic active sites and CTC. Experimental and theoretical calculations provided confirmation that the combination of BiOCOOH and O-gC3N4 effectively enhanced the light absorption capacity and photocatalytic performance. Furthermore, we investigated the influence of environmental factors such as pH value and anions on the photocatalytic degradation experiment, which offers valuable insights for the application of composite catalysts in wastewater treatment.


Asunto(s)
Quitosano , Luz , Oxitetraciclina , Oxitetraciclina/química , Quitosano/química , Catálisis , Contaminantes Químicos del Agua/química , Adsorción , Fotólisis , Bismuto/química , Concentración de Iones de Hidrógeno , Procesos Fotoquímicos , Purificación del Agua/métodos , Compuestos de Nitrógeno/química , Grafito
19.
J Nanobiotechnology ; 22(1): 349, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902761

RESUMEN

Repeated and widespread use of single chemical pesticides raises concerns about efficiency and safety, developing multi-component synergistic pesticides provides a new route for efficient control of diseases. Most commercial compound formulations are open systems with non-adjustable released rates, resulting in a high frequency of applications. Meanwhile, although nano pesticide delivery systems constructed with different carrier materials have been extensively studied, realizing their actual scale-up production still has important practical significance due to the large-scale field application. In this study, a boscalid and pyraclostrobin dual-loaded nano pesticide system (BPDN) was constructed with industrial-grade carrier materials to facilitate the realization of large-scale production. The optimal industrial-scale preparation mechanism of BPDN was studied with surfactants as key factors. When agricultural emulsifier No.600 and polycarboxylate are used as the ratio of 1:2 in the preparation process, the BPDN has a spherical structure with an average size of 270 nm and exhibits superior physical stability. Compared with commercial formulation, BPDN maintains rate-stabilized release up to 5 times longer, exhibits better dispersion and spreading performance on foliar, has more than 20% higher deposition amounts, and reduces loss. A single application of BPDN could efficiently control tomato gray mold during the growing period of tomatoes due to extended duration and combinatory effectiveness, reducing two application times and labor costs. Toxicology tests on various objects systematically demonstrated that BPDN has improved safety for HepG2 cells, and nontarget organism earthworms. This research provides insight into creating safe, efficient, and environmentally friendly pesticide production to reduce manual operation times and labor costs. Accompanied by production strategies that can be easily scaled up industrially, this contributes to the efficient use of resources for sustainable agriculture.


Asunto(s)
Plaguicidas , Estrobilurinas , Plaguicidas/química , Humanos , Portadores de Fármacos/química , Animales , Carbamatos/química , Tensoactivos/química , Nanopartículas/química , Tamaño de la Partícula , Solanum lycopersicum , Compuestos de Bifenilo , Niacinamida/análogos & derivados
20.
BMC Urol ; 24(1): 131, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909202

RESUMEN

OBJECTIVE: The incidence of recurrent hernia after radical resection of prostate cancer is high, so this article discusses the incidence and risk factors of inguinal hernia after radical resection of prostate cancer. METHODS: This case control study was conducted in The First People's Hospital of Huzhou clinical data of 251 cases underwent radical resection of prostate cancer in this hospital from March 2019 to May 2021 were retrospectively analyzed. According to the occurrence of inguinal hernia, the subjects were divided into study group and control group, and the clinical data of each group were statistically analyzed, Multivariate Logistic analysis was performed to find independent influencing factors for predicting the occurrence of inguinal hernia. The Kaplan-Meier survival curve was drawn according to the occurrence and time of inguinal hernia. RESULTS: The overall incidence of inguinal hernia after prostate cancer surgery was 14.7% (37/251), and the mean time was 8.58 ± 4.12 months. The average time of inguinal hernia in patients who received lymph node dissection was 7.61 ± 4.05 (month), and that in patients who did not receive lymph node dissection was 9.16 ± 4.15 (month), and there was no significant difference between them (P > 0.05). There were no statistically significant differences in the incidence of inguinal hernia with age, BMI, hypertension, diabetes, PSA, previous abdominal operations and operative approach (P > 0.05), but there were statistically significant differences with surgical method and pelvic lymph node dissection (P < 0.05). The incidence of pelvic lymph node dissection in the inguinal hernia group was 24.3% (14/57), which was significantly higher than that in the control group 11.8% (23/194). Logistic regression analysis showed that pelvic lymph node dissection was a risk factor for inguinal hernia after prostate cancer surgery (OR = 0.413, 95%Cl: 0.196-0.869, P = 0.02). Kaplan-Meier survival curve showed that the rate of inguinal hernia in the group receiving pelvic lymph node dissection was significantly higher than that in the control group (P < 0.05). CONCLUSION: Pelvic lymph node dissection is a risk factor for inguinal hernia after radical resection of prostate cancer.


Asunto(s)
Hernia Inguinal , Complicaciones Posoperatorias , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Hernia Inguinal/epidemiología , Hernia Inguinal/cirugía , Neoplasias de la Próstata/cirugía , Factores de Riesgo , Incidencia , Estudios de Casos y Controles , Anciano , Persona de Mediana Edad , Prostatectomía/efectos adversos , Prostatectomía/métodos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Escisión del Ganglio Linfático , Correlación de Datos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA