Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
1.
PeerJ ; 12: e17424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827279

RESUMEN

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Asunto(s)
Biodegradación Ambiental , Fenoles , Microbiología del Suelo , Contaminantes del Suelo , Fenoles/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Ecosistema , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
2.
J Org Chem ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831644

RESUMEN

The nucleophilic ring-opening of aziridine derivatives provides an important synthetic tool for the preparation of various ß-functionalized amines. Amines as nucleophiles are employed to prepare synthetically useful 1,2-diamines in the presence of various catalysts or activators. Herein, the B2(OH)4-mediated reductive ring-opening transformation of N-tosyl aziridines by nitroarenes was developed. This aqueous protocol employed nitroarenes as cheap and readily available amino sources and proceeds under external catalyst-free conditions. Control experiments and DFT calculations pointed to the in situ reduction of nitroarenes to aryl amines via N-aryl boramidic acid (E) and an SN1-type ring-opening of N-tosylaziridines by the resultant aryl amines with high regioselectivity.

3.
Nat Mach Intell ; 6(4): 449-460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38855263

RESUMEN

The 5' UTR, a regulatory region at the beginning of an mRNA molecule, plays a crucial role in regulating the translation process and impacts the protein expression level. Language models have showcased their effectiveness in decoding the functions of protein and genome sequences. Here, we introduced a language model for 5' UTR, which we refer to as the UTR-LM. The UTR-LM is pre-trained on endogenous 5' UTRs from multiple species and is further augmented with supervised information including secondary structure and minimum free energy. We fine-tuned the UTR-LM in a variety of downstream tasks. The model outperformed the best known benchmark by up to 5% for predicting the Mean Ribosome Loading, and by up to 8% for predicting the Translation Efficiency and the mRNA Expression Level. The model also applies to identifying unannotated Internal Ribosome Entry Sites within the untranslated region and improves the AUPR from 0.37 to 0.52 compared to the best baseline. Further, we designed a library of 211 novel 5' UTRs with high predicted values of translation efficiency and evaluated them via a wet-lab assay. Experiment results confirmed that our top designs achieved a 32.5% increase in protein production level relative to well-established 5' UTR optimized for therapeutics.

4.
Front Nutr ; 11: 1371995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721027

RESUMEN

Background: Chronic kidney disease (CKD) is a common public health problem, which is characterized as impairment of renal function. The associations between blood metabolites and renal function remained unclear. This study aimed to assess the causal effect of various circulation metabolites on renal function based on metabolomics. Methods: We performed a two-sample Mendelian randomization (MR) analysis to estimate the causality of genetically determined metabolites on renal function. A genome-wide association study (GWAS) of 486 metabolites was used as the exposure, while summary-level data for creatinine-based estimated glomerular filtration rate (eGFR) or CKD occurrence were set the outcomes. Inverse variance weighted (IVW) was used for primary causality analysis and other methods including weight median, MR-egger, and MR-PRESSO were applied as complementary analysis. Cochran Q test, MR-Egger intercept test, MR-PRESSO global test and leave-one-out analysis were used for sensitivity analysis. For the identified metabolites, reverse MR analysis, linkage disequilibrium score (LDSC) regression and multivariable MR (MVMR) analysis were performed for further evaluation. The causality of the identified metabolites on renal function was further validated using GWAS data for cystatin-C-based eGFR. All statistical analyses were performed in R software. Results: In this MR analysis, a total of 44 suggestive associations corresponding to 34 known metabolites were observed. After complementary analysis and sensitivity analysis, robust causative associations between two metabolites (betaine and N-acetylornithine) and renal function were identified. Reverse MR analysis showed no causal effects of renal function on betaine and N-acetylornithine. MVMR analysis revealed that genetically predicted betaine and N-acetylornithine could directly influence independently of each other. The causal effects of betaine and N-acetylornithine were also found on cystatin-C-based eGFR. Conclusion: Our study provided evidence to support the causal effects of betaine and N-acetylornithine on renal function. These findings required further investigations to conduct mechanism exploration and drug target selection of these identified metabolites.

5.
Small ; : e2400930, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721967

RESUMEN

The self-assembly yield of DNA nanostructures can be exponentially lower with increasing structural complexity. Few optimizing strategies are available in the DNA nanotechnology field for the assembly yield improvement. Here, betaine and its analogs are applied as supplementary ingredients in DNA self-assembly. Such a simple implementation results in effective yield improvement. Through a comprehensive investigation, a reliable yield improvement of two- to threefold is achieved for a number of DNA nanostructures with considerable complexity.

6.
Blood Purif ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740012

RESUMEN

BACKGROUND: Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY: In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and a good hemocompatibility shown during treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.

7.
Br J Pharmacol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721797

RESUMEN

Neuroinflammation is initiated in response to a variety of endogenous and exogenous sources. As the resident macrophages of the central nervous system, the polarization of microglia into either the M1 pro-inflammatory phenotype or the M2 anti-inflammatory phenotype holds great promise as a therapeutic strategy for neuroinflammation. Natural products, comprising a vital chemical library with distinctive structures and diverse functions, have been extensively employed to modulate microglial polarization for the treatment of neuroinflammation. In this review, we present up-to-date and extensive insights into the therapeutic effects and underlying mechanisms of natural products in the context of neuroinflammation. Furthermore, the review aims to present a new perspective by focusing on the targets of natural compounds, elucidating the molecular mechanisms and guiding the transition from natural-derived lead compounds to potential anti-neuroinflammatory drugs. Additionally, we provide a comprehensive overview of the challenges and limitations associated with the utilization of natural products for neuroinflammation therapy.

8.
J Agric Food Chem ; 72(22): 12541-12554, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785039

RESUMEN

We investigated the protective effect of walnut peptides and YVPFPLP (YP-7) on scopolamine-induced memory impairment in mice and ß-amyloid (Aß)-induced excitotoxic injury in primary hippocampal neurons, respectively. Additionally, the protective mechanism of YP-7 on neuronal excitotoxicity was explored. Mouse behavioral and hippocampal slice morphology experiments indicate that YP-7 improves the learning and memory abilities of cognitively impaired mice and protects synaptic integrity. Immunofluorescence, western blotting, and electrophysiological experiments on primary hippocampal neurons indicate that YP-7 inhibits neuronal damage caused by excessive excitation of neurons induced by Aß. HT-22 cell treatment with peroxisome proliferator-activated receptor γ (PPARγ) activators and inhibitors showed that YP-7 activates PPARγ expression and maintains normal neuronal function by forming stable complexes with PPARγ to inhibit the extracellular regulated protein kinase pathway. Therefore, YP-7 can ameliorate glutamate-induced excitotoxicity and maintain neuronal signaling. This provides a theoretical basis for active peptides to ameliorate excitotoxicity and the development of functional foods.


Asunto(s)
Modelos Animales de Enfermedad , Hipocampo , Juglans , Trastornos de la Memoria , Neuronas , PPAR gamma , Péptidos , Escopolamina , Animales , Escopolamina/efectos adversos , Ratones , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Juglans/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Péptidos/química , Péptidos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Humanos , Memoria/efectos de los fármacos , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Péptidos beta-Amiloides/metabolismo
9.
Asia Pac J Clin Nutr ; 33(2): 194-199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38794979

RESUMEN

BACKGROUND AND OBJECTIVES: Feeding intolerance (FI) is a common problem in late preterm infants (34 weeks ≤ gestational age < 37 weeks). This study aimed to evaluate the efficacy and safety of phentolamine combined with B vitamins in treating FI in late preterm infants and to explore its effects on gastrointestinal symptoms, inflammation and complications. METHODS AND STUDY DESIGN: We randomly assigned 118 late preterm infants with FI to a treatment group (n = 56) or a control group (n = 62). The treatment group received intravenous phentolamine and intramuscular B vitamins, whereas the control group received basic treatment only. We measured the time of disappearance of gastrointestinal symptoms, the time of basal at-tainment, the time of hospitalisation, the incidence of complications, the concentrations of inflammatory markers and the overall effective rate of treatment. RESULTS: The treatment group had a shorter duration of gastrointestinal symptoms than did the control group (p < 0.01). The treatment group also had lower concentrations of inflammatory markers and a higher overall effective rate than did the control group (p < 0.05). There was no difference between the two groups in the time of hospitalisation, basal attainment, weight re-covery and the incidence of complications (p > 0.05). CONCLUSIONS: Phentolamine and B vitamins can reduce gastrointestinal symptoms and inflammation in late preterm infants with FI but do not affect the occurrence of complications.


Asunto(s)
Recien Nacido Prematuro , Fentolamina , Complejo Vitamínico B , Humanos , Recién Nacido , Masculino , Femenino , Fentolamina/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Complejo Vitamínico B/uso terapéutico , Intolerancia Alimentaria , Enfermedades Gastrointestinales/tratamiento farmacológico
10.
ACS Synth Biol ; 13(5): 1394-1399, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757697

RESUMEN

Substantial improvements in DNA sequencing and synthesis technologies and increased understanding of genome biology have empowered the development of synthetic genomics. The ability to design and construct engineered living cells boosted up by synthetic chromosomes provides opportunities to tackle enormous current and future challenges faced by humanity and the planet. Here we review the progresses, considerations, challenges, and future direction of the "design-build-test-learn" cycle used in synthetic genomics. We also discuss future applications enabled by synthetic genomics as this emerging field shapes and revolutionizes biomanufacturing and biomedicine.


Asunto(s)
Genómica , Biología Sintética , Genómica/métodos , Biología Sintética/métodos , Humanos , Ingeniería Genética/métodos
11.
Water Sci Technol ; 89(9): 2440-2456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747959

RESUMEN

1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L). Five 1,4-dioxane-metabolizing pure strains LCD6B, LCD6D, WC10G, WCD6H, and WD4H were isolated and characterized. The partial 16S rRNA gene sequencing showed that the five bacterial strains were related to Dokdonella sp. (98.3%), Acinetobacter sp. (99.0%), Afipia sp. (99.2%), Nitrobacter sp. (97.9%), and Pseudonocardia sp. (99.4%), respectively. Nitrobacter sp. WCD6H is the first reported 1,4-dioxane-metabolizing bacterium in the genus of Nitrobacter. The net specific growth rates of these five cultures are consistently higher than those reported in the literature at 1,4-dioxane concentrations <0.5 mg/L. Compared to the literature, our newly discovered strains have lower half-maximum-rate concentrations (1.8 to 8.2 mg-dioxane/L), lower maximum specific 1,4-dioxane utilization rates (0.24 to 0.47 mg-dioxane/(mg-protein ⋅ d)), higher biomass yields (0.29 to 0.38 mg-protein/mg-dioxane), and lower decay coefficients (0.01 to 0.02 d-1). These are characteristics of microorganisms living in oligotrophic environments.


Asunto(s)
Dioxanos , Dioxanos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , ARN Ribosómico 16S/genética , Filogenia , Contaminantes Químicos del Agua/metabolismo
13.
J Biomater Appl ; : 8853282241257183, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816339

RESUMEN

Addressing fracture-related infections (FRI) and impaired bone healing remains a significant challenge in orthopedics and stomatology. Researchers aim to address this issue by utilizing biodegradable biomaterials, such as magnesium/poly lactic acid (Mg/PLA) composites, to offer antibacterial properties during the degradation of biodegradable implants. Existing Mg/PLA composites often lack sufficient Mg content, hindering their ability to achieve the desired antibacterial effect. Additionally, research on the anti-inflammatory effects of these composites during late-stage degradation is limited. To strengthen mechanical properties, bolster antibacterial efficacy, and enhance anti-inflammatory capabilities during degradation, we incorporated elevated Mg content into PLA to yield Mg/PLA composites. These composites underwent in vitro degradation studies, cellular assays, bacterial tests, and simulation of the PLA degradation microenvironment. 20 wt% and 40 wt% Mg/PLA composites displayed significant antibacterial properties, with three composites exhibiting notable anti-inflammatory effects. In contrast, elevated Mg content detrimentally impacted mechanical properties. The findings suggest that Mg/PLA composites hold promise in augmenting antibacterial and anti-inflammatory attributes within polymers, potentially serving as temporary regenerative materials for treating bone tissue defects complicated by infections.

14.
Front Microbiol ; 15: 1362283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800750

RESUMEN

Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.

15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 275-281, 2024 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-38557380

RESUMEN

OBJECTIVES: To investigate the nutritional status of children with cystic fibrosis (CF) and understand the correlation between malnutrition and clinical characteristics as well as lung function. METHODS: A retrospective analysis was performed on clinical data of CF children admitted from January 2016 to June 2023. Clinical characteristics of CF children with different nutritional statuses were compared, and the correlation between malnutrition and lung function was analyzed. RESULTS: A total of 52 CF children were included, comprising 25 boys (48%) and 27 girls (52%), aged between 7 months and 17 years. Respiratory symptoms were the predominant clinical manifestations (96%, 50/52). The prevalence of malnutrition was 65% (34/52), with moderate/severe malnutrition being the most common (65%, 22/34). The malnutrition group had a longer duration of illness, higher proportion of digestive system symptoms, and lower levels of serum albumin (P<0.05). Pulmonary function parameters, including forced expiratory volume in one second as a percentage of the predicted value, ratio of forced expiratory volume in one second to forced vital capacity, forced expiratory flow at 25% of forced vital capacity exhaled, forced expiratory flow at 50% of forced vital capacity exhaled, forced expiratory flow at 75% of forced vital capacity exhaled, and maximum mid-expiratory flow as a percentage of the predicted value, were lower in the malnutrition group compared to the normal nutrition group (P<0.05). Correlation analysis showed body mass index Z-score was positively correlated with the above six pulmonary function parameters (P<0.05). CONCLUSIONS: The prevalence of malnutrition is high in CF children and is associated with decreased lung function. CF children with higher body mass index have better lung function. Therefore, screening and evaluation of nutritional status as well as appropriate nutritional intervention should be emphasized in CF children.


Asunto(s)
Fibrosis Quística , Desnutrición , Niño , Masculino , Femenino , Humanos , Lactante , Estado Nutricional , Estudios Retrospectivos , Fibrosis Quística/complicaciones , Pulmón , Volumen Espiratorio Forzado , Desnutrición/etiología , Desnutrición/complicaciones
16.
J Org Chem ; 89(8): 5239-5249, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38587356

RESUMEN

We herein disclose a Pd-catalyzed Suzuki-Miyaura coupling of cyclic Morita-Baylis-Hillman adducts with organoboronic acids under mild conditions, which allows for a rapid access to diverse α-alkyl substituted cycloenones. The advantage of this method resides in the employment of functionalized allyl alcohols as the unprecedented electrophilic partners in the absence of external activators.

17.
Adv Sci (Weinh) ; : e2309303, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582516

RESUMEN

The development of highly active, reusable catalysts for aqueous-phase reactions is challenging. Herein, metallic nickel is encapsulated in a nitrogen-doped carbon-silica composite (SiO2@Ni@NC) as a catalyst for the selective hydrogenation of vanillin in aqueous media. The constructed catalyst achieved 99.8% vanillin conversion and 100% 4-hydroxymethyl-2-methoxyphenol selectivity at room temperature. Based on combined scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman analyses, the satisfactory catalytic performance is attributed to the composite structure consisting of an active metal, carbon, and silica. The hydrophilic silica core promoted dispersion of the catalyst in aqueous media. Moreover, the external hydrophobic NC layer has multiple functions, including preventing oxidation or leaching of the internal metal, acting as a reducing agent to reduce the internal metal, regulating the active-site microenvironment by enriching the concentrations of H2 and organic reactants, and modifying the electronic structure of the active metal via metal-support interactions. Density functional theory calculations indicated that NC facilitates vanillin adsorption and hydrogen dissociation to promote aqueous-phase hydrogenation. This study provides an efficient strategy for constructing encapsulated Ni-based amphiphilic catalysts to upgrade biomass-derived compounds.

18.
Front Med (Lausanne) ; 11: 1344314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596788

RESUMEN

Introduction: Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection. Methods: We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars. Results: The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%. Discussion: Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.

19.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38610455

RESUMEN

In order to guide orchard management robots to realize some tasks in orchard production such as autonomic navigation and precision spraying, this research proposed a deep-learning network called dynamic fusion segmentation network (DFSNet). The network contains a local feature aggregation (LFA) layer and a dynamic fusion segmentation architecture. The LFA layer uses the positional encoders for initial transforming embedding, and progressively aggregates local patterns via the multi-stage hierarchy. The fusion segmentation module (Fus-Seg) can format point tags by learning a multi-embedding space, and the generated tags can further mine the point cloud features. At the experimental stage, significant segmentation results of the DFSNet were demonstrated on the dataset of orchard fields, achieving an accuracy rate of 89.43% and an mIoU rate of 74.05%. DFSNet outperforms other semantic segmentation networks, such as PointNet, PointNet++, D-PointNet++, DGCNN, and Point-NN, with improved accuracies over them by 11.73%, 3.76%, 2.36%, and 2.74%, respectively, and improved mIoUs over the these networks by 28.19%, 9.89%, 6.33%, 9.89, and 24.69%, respectively, on the all-scale dataset (simple-scale dataset + complex-scale dataset). The proposed DFSNet can capture more information from orchard scene point clouds and provide more accurate point cloud segmentation results, which are beneficial to the management of orchards.

20.
Ecotoxicol Environ Saf ; 277: 116345, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653021

RESUMEN

2,4-dichlorophenol (2,4-DCP), 2,5-DCP, 2,4,5-trichlorophenol (2,4,5-TCP), 2,4,6-TCP, and ortho-phenylphenol (OPP) are widely present in the environment. However, their associations with risk and prognosis of diabetes and prediabetes remains unclear. We investigated the associations of these five phenols with the risk of diabetes and prediabetes, and with all-cause and cardiovascular disease (CVD) mortality, in adults with diabetes or prediabetes (n=6419). Information on diabetes and prediabetes indicators, and mortality data was collected from the National Health and Nutrition Examination Survey. Logistic and Cox regression models were used to explore the associations of the five phenols with risk and prognosis of diabetes and prediabetes. Participants in the highest urinary 2,4-DCP and 2,5-DCP tertiles had higher odds of diabetes [adjusted odds ratio (aOR), 1.34, 95 % confidence interval (CI): 1.10, 1.62; aOR, 1.29, 95 % CI: 1.07, 1.56, respectively] than those in the lowest tertiles. Participants with urinary OPP concentrations above the limit of detection (LOD), but below median had an aOR of 1.25 (95 % CI: 1.08, 1.46) for prediabetes compared to those with concentrations below the LOD. In adults with diabetes, the highest 2,4-DCP and 2,5-DCP tertiles were associated with all-cause mortality [adjusted hazard ratio (aHR), 1.49; 95 % CI: 1.08, 2.06; aHR, 1.49; 95 % CI: 1.08, 2.05, respectively] and CVD mortality (aHR, 2.58; 95 % CI: 1.33, 4.97; aHR, 1.96; 95 % CI: 1.06, 3.60, respectively) compared with the lowest tertiles. Compared with 2,4,5-TCP concentrations below the LOD, those above median were associated with all-cause mortality (aHR: 1.75; 95 % CI: 1.24, 2.48) and CVD mortality (aHR: 2.34; 95 % CI: 1.19, 4.63) in adults with prediabetes. Furthermore, the associations between these phenols and mortality were strengthened in some subgroups. Environmental exposure to 2,4-DCP, 2,5-DCP, 2,4,5-TCP, and OPP increases the risk or adverse prognosis of diabetes or prediabetes in adults in the US. Further studies are required to confirm these findings.


Asunto(s)
Clorofenoles , Diabetes Mellitus , Contaminantes Ambientales , Estado Prediabético , Humanos , Clorofenoles/orina , Masculino , Estado Prediabético/orina , Estado Prediabético/epidemiología , Estado Prediabético/inducido químicamente , Femenino , Persona de Mediana Edad , Diabetes Mellitus/epidemiología , Adulto , Contaminantes Ambientales/orina , Fenoles/orina , Pronóstico , Encuestas Nutricionales , Anciano , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA