Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 101(6): 5046-5059, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29525304

RESUMEN

Camelina is a drought- and salt-tolerant oil seed, which in total ether extract (EE) contains up to 74% polyunsaturated fatty acids. The objective of this study was to assess the effects of replacing calcium salts of palm oil (Megalac, Church & Dwight Co. Inc., Princeton, NJ) with camelina seed (CS) on ruminal fermentation, digestion, and flows of fatty acids (FA) and AA in a dual-flow continuous culture system when supplemented at 5 or 8% dietary EE. Diets were randomly assigned to 8 fermentors in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square design, with four 10-d experimental periods consisting of 7 d for diet adaptation and 3 d for sample collection. Treatments were (1) calcium salts of palm oil supplementation at 5% EE (MEG5); (2) calcium salts of palm oil supplementation at 8% EE (MEG8); (3) 7.7% CS supplementation at 5% EE (CS5); and (4) 17.7% CS supplementation at 8% EE (CS8). Diets contained 55% orchardgrass hay, and fermentors were fed 72 g of dry matter/d. On d 8, 9, and 10 of each period, digesta effluent samples were taken for ruminal NH3, volatile fatty acids, nitrogen metabolism analysis, and long-chain FA and AA flows. Statistical analysis was performed using the MIXED procedure (SAS Institute Inc., Cary, NC). We detected an interaction between FA source and dietary EE level for acetate, where MEG8 had the greatest molar proportion of acetate. Molar proportions of propionate were greater and total volatile fatty acids were lower on CS diets. Supplementation of CS decreased overall ruminal nutrient true digestibility, but dietary EE level did not affect it. Diets containing CS had greater biohydrogenation of 18:2 and 18:3; however, biohydrogenation of 18:1 was greater in MEG diets. Additionally, CS diets had greater ruminal concentrations of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid. Dietary EE level at 8% negatively affected flows of NH3-N (g/d), nonammonia N, and bacterial N as well as the overall AA outflow. However, treatments had minor effects on individual ruminal AA digestibility. The shift from acetate to propionate observed on diets containing CS may be advantageous from an energetic standpoint. Moreover, CS diets had greater ruminal outflow of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid than MEG diets, suggesting a better FA profile available for postruminal absorption. However, dietary EE at 8% was deleterious to overall N metabolism and AA outflow, indicating that CS can be fed at 5% EE without compromising N metabolism.


Asunto(s)
Calcio/metabolismo , Aceite de Palma/metabolismo , Rumen/metabolismo , Semillas/química , Animales , Camellia/química , Camellia/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Fermentación , Modelos Biológicos , Aceite de Palma/análisis , Semillas/metabolismo
2.
J Dairy Sci ; 100(7): 5281-5292, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28456405

RESUMEN

Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH4) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH3-N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM diet had a greater gas pool size than both CM diets. The SBM diet increased in vitro OM digestibility; however, it also tended to increase CH4 production (mM and g/kg of DM) compared with both CM diets. Based on the results of this study, CM with RUP varying from 38 to 50% of crude protein does not affect ruminal fermentation, nutrient digestion, and microbial growth when CM is included at up to 34% of the diet.


Asunto(s)
Brassicaceae/química , Proteínas en la Dieta/metabolismo , Fermentación , Glycine max/química , Metano/biosíntesis , Proteínas de Plantas/metabolismo , Rumen/metabolismo , Proteínas de Soja/metabolismo , Alimentación Animal , Animales , Bovinos , Digestión , Técnicas In Vitro , Cinética , Distribución Aleatoria
3.
J Anim Sci ; 95(3): 1335-1344, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28380537

RESUMEN

Cheatgrass (CG; ), an introduced winter annual grass, is an aggressive invader of the sagebrush community in the Western United States. Because of its greater flammability, mature CG constitutes a fire hazard leading to repeated wildfires. One fuel-reduction strategy is livestock grazing. The objective of this study was to evaluate the effects of urea, molasses, or a combination of urea and molasses supplementation of a CG-based diet on digestibility, microbial fermentation, bacterial protein synthesis, and nutrient flow using a dual-flow continuous culture system. Eight fermenters were used in a replicate 4 × 4 Latin square design with four 10-d experimental periods. Experimental treatments (DM basis) were 1) forage only (CON), 2) CG plus urea alone (URE; 1.36% urea), 3) CG plus molasses alone (MOL; 15.9% molasses), and 4) CG plus urea and molasses combined (URE+MOL; 1.28% urea plus 19.3% molasses). Each fermenter was fed 72 g/d of DM, and data were analyzed using the GLIMMIX procedure of SAS (SAS Inst. Inc., Cary, NC). The true digestibilities of NDF and ADF were not affected by diets ( > 0.05). Molasses-containing diets had greater true digestibility of OM ( = 0.02). However, true digestibility of CP was increased when molasses was fed alone ( < 0.01). Molasses-containing diets had lower pH ( < 0.01) and greater VFA concentrations ( < 0.01) compared to those of the other diets. The URE+MOL diet resulted in a greater VFA concentration ( < 0.01). Propionate concentration increased ( < 0.01), whereas acetate concentration decreased ( < 0.01) when molasses alone or in combination with urea was added to the diets. Supplying molasses alone resulted in greater ( = 0.03) total branched-chain VFA compared to the other diets. The concentration of NH-N and total N flow increased ( < 0.01) in response to urea supplementation and was greater ( < 0.01) when urea alone was supplemented in the diet. On the other hand, molasses-supplemented diets yielded more non-ammonia N ( < 0.01) and bacterial N ( = 0.04). Supplementation had no effect ( = 0.83) on bacterial efficiency. Results from this study indicate that the addition of urea and molasses in a CG-based diet could improve nutrient supply to animals, notably VFA supply and microbial N supply; however, in the levels tested in this study, it did not improve CG utilization as assessed by NDF digestion.


Asunto(s)
Bromus/metabolismo , Carbohidratos/farmacología , Fermentación/efectos de los fármacos , Nitrógeno/farmacología , Alimentación Animal/análisis , Animales , Proteínas Bacterianas/metabolismo , Reactores Biológicos/veterinaria , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión/efectos de los fármacos , Masculino , Melaza , Rumen/metabolismo , Urea/farmacología
4.
J Anim Sci ; 94(4): 1600-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27136019

RESUMEN

Flaxseed (FS) and chia seed (CS) are oilseeds rich in omega-3 fatty acids, which may change meat and milk composition when added to ruminants' diets and may have health benefits for humans. Literature on the effects of CS supplementation on ruminal metabolism is nonexistent. A dual-flow continuous culture fermenter system consisting of 6 fermenters was used to assess the effect of FS and CS supplementation in an alfalfa hay-based diet on ruminal fermentation, nutrient digestibility, microbial protein synthesis, and long-chain fatty acid flow. Diets were randomly assigned to fermenters in a replicated 3 × 3 Latin square design, with 3 consecutive periods of 10 d each, consisting of 7 d for diet adaptation and 3 d for sample collection. Each fermenter was fed a total of 72 g of DM/d divided in 6 equal portions. Treatments were 1) alfalfa hay + calcium soaps of palm oil fatty acid (MEG; 69.3 g DM/d of alfalfa hay plus 2.7 g DM/d of calcium soaps of palm oil fatty acid), 2) alfalfa hay + FS (FLAX; 68.4 g DM/d of alfalfa hay plus 3.6 g DM/d of ground FS), and 3) alfalfa hay + CS (CHIA; 68.04 g DM/d of alfalfa hay plus 3.96 g DM/d of ground CS). Dietary treatments had similar amounts of total fat, and fat supplements were ground to 2-mm diameter. Effluents from the last 3 d of incubation were composited for analyses. Data were analyzed using the MIXED procedure of SAS. Ruminal apparent and true nutrient digestibility of all nutrients did not differ ( > 0.05) among treatments. Compared with MEG, FLAX and CHIA increased the flows of C18:3 -3, C20:4 -6, and total PUFA ( < 0.01). Both CHIA and FLAX treatments had greater ruminal concentrations of C18:0, indicating that both CS and FS fatty acids were extensively biohydrogenated in the rumen. The NH-N concentration, microbial N flow, and efficiency of microbial protein synthesis were not affected ( > 0.05) by treatments. Lastly, there were no differences ( > 0.05) among diets for total VFA concentration and molar proportions of individual VFA. Results from this study indicate that FS and CS supplementation did not impair ruminal fermentation, digestibility, microbial efficiency, and ruminal N metabolism. Overall, CS appears to be as effective as FS as a fat source when added to ruminants' diets using a dual-flow continuous culture system.


Asunto(s)
Lino/metabolismo , Rumen/metabolismo , Animales , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Femenino , Fermentación , Modelos Biológicos , Nitrógeno/metabolismo , Aceite de Palma , Aceites de Plantas , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA