Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Methods Mol Biol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39316337

RESUMEN

Pluripotent stem cells (PSCs) form well-formed embryoid bodies (EBs) in 3D culture. These EBs are formed in culture media lacking leukemia inhibitory factor (LIF) or basic fibroblast growth factor (bFGF) in mouse and human PSCs, respectively. EBs are excellent technical tools for understanding developmental biology and inducing controlled differentiation in succeeding experimental steps. Technically speaking, EBs are spontaneously differentiated PSCs in 3D and exhibit all three lineages in a time-point/sequential manner. For example, ectoderm will form first, followed by mesoderm and endoderm. We have attempted to co-culture human neonatal foreskin-derived fibroblast cells in our laboratory with the PSCs first in 2D conditions followed by the induction of EBs (PSC+fibroblasts co-cultured) in low attachment dishes. We also performed spontaneous differentiation of such EBs (co-cultured with fibroblasts). We checked the presence of markers of various lineages, namely, ectoderm, mesoderm, and endoderm in days 6, 10, and 12 day EBs. We have also compared the fibroblast co-cultured EBs, along with control EBs (derived from only PSCs). This co-culture system mimics the natural conditions of uterine implantation and the role of the endometrial fibroblasts in the induction of further embryonic development. The fibroblast co-cultured iPSC EBs had better roundness scores than the normal iPSC EBs and had a higher expression of lineage-specific markers.

2.
Biochem Biophys Res Commun ; 739: 150557, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39178798

RESUMEN

Arachidonic acid (AA) is an important omega-6 fatty acid that can be metabolised into an impressive spectrum of biologically active mediators participating in various cellular functions. Studies have shown that fatty acid synthesis is enhanced in embryonic stem cells (ESCs), and it is crucial for the cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Fatty acid synthesis increases the cellular lipid contents and, in turn, promotes mitochondrial fission and cellular reprogramming. AA was found to induce acetyl-CoA carboxylase 1 (ACC1) expression, a major enzyme in fatty acid synthesis. In this study, we have investigated the regulation of pluripotency, fatty acid synthesis and mitochondrial activities of the human induced pluripotent stem cells (hiPSCs) and the human embryonal carcinoma (hEC) NTERA-2 cells upon treatment with varying concentrations of AA. Our results indicate that a lower concentration of AA can increase pluripotency, as evidenced by an increased expression of pluripotency markers, increased fatty acid synthesis as evidenced by lipid estimation and modulated mitochondrial fission, as evidenced by mitotracker staining for fissioned mitochondria. Moreover, higher concentrations of AA-induced the opposite effect, leading to pluripotent stem cell differentiation. Molecular docking simulations predicted the possible interactions between AA and its metabolites with fatty acid synthesis regulators ACC1 and CREB1 (Cyclic adenosine monophosphate Response Element Binding Protein 1) as a mechanism for AA regulating pluripotency.

3.
Mol Biotechnol ; 66(5): 948-959, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38198052

RESUMEN

Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.


Asunto(s)
Ghrelina , Músculo Esquelético , Atrofia Muscular , Regeneración , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Regeneración/efectos de los fármacos , Animales , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/tratamiento farmacológico , Ghrelina/farmacología , Ghrelina/metabolismo , Ghrelina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética
4.
Life Sci ; 333: 122141, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797688

RESUMEN

Toxicity caused by chronic hyperglycemia is a significant factor affecting skeletal muscle myogenesis, resulting in diabetic myopathy. Chronic and persistent hyperglycemia causes activation of the atrophy-related pathways in the skeletal muscles, which eventually results in inflammation and muscle degeneration. To counteract this process, various bioactive compound has been studied for their reversal or hypertrophic effect. In this study, we explored the molecular mechanisms associated with reversing glucotoxicity's effect in C2C12 cells by arachidonic acid (AA). We found a substantial increase in the pro-inflammatory cytokines and ROS production in hyperglycemic conditions, mitigated by AA supplementation. We found that AA supplementation restored protein synthesis that was downregulated under glucotoxicity conditions. AA enhanced myogenesis by suppressing high glucose induced inflammation and ROS production and enhancing protein synthesis. These results imply that AA has cytoprotective actions against hyperglycemia-induced cytotoxicity.


Asunto(s)
Hiperglucemia , Atrofia Muscular , Humanos , Ácido Araquidónico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Hiperglucemia/metabolismo , Inflamación/patología
5.
Reprod Toxicol ; 120: 108438, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454977

RESUMEN

Arachidonic acid (AA), an ω-6 polyunsaturated fatty acid involved in signalling pathways that drive cell fate decisions, has an enhancing role in the immunomodulatory effect on mesenchymal stem cells and the vasculogenesis of embryonic stem cells. 3D embryoid bodies (EBs) from pluripotent stem cells (PSCs) have been used as in vitro models for embryotoxicity for various compounds/drugs. Valproic acid (VA), a common anti-epileptic drug, is known to be embryotoxic and cause malformations in embryos. As early embryogenesis depends on AA, we investigated the embryo protective effects of AA against the embryotoxic drug VA in this study. The effects of AA on the proliferation and cell cycle parameters of PSCs were studied. In particular, the potential of AA to abrogate VA-induced embryotoxicity in vitro was evaluated using ROS detection and antioxidant assays. In response to AA, we observed modulation in cell proliferation of induced pluripotent stem cells (iPSCs) and pluripotent NTERA-2 embryonal carcinoma (EC) cells. The present study substantiates the cytoprotective effects of AA against VA. These results imply that AA plays a critical role in the proliferation and differentiation of iPSCs and EC cells and protects the EBs from cytotoxic damage, thereby ensuring normal embryogenesis. Thus, the bioactive lipid AA may be explored for supplementation to benefit pregnant women treated with long-term anti-epileptic drugs to prevent in-utero fetal growth malformations.


Asunto(s)
Cuerpos Embrioides , Células Madre Pluripotentes , Humanos , Femenino , Embarazo , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Células Madre Embrionarias , Diferenciación Celular
6.
Biol Trace Elem Res ; 201(6): 2927-2941, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36048359

RESUMEN

The dose contributed from thoron (220Rn) and its progeny has been neglected in the dose assessment because of its short half-life (t1/2 = 55.6 s) and generally low concentrations. Recently, concentrations of 220Rn gas and its progeny were found to be pronounced in the traditional residential dwellings in China, on beaches of India and in other countries. Accordingly, we investigated the biological effects of thoron (220Rn) decay products in various mouse organs, succeeding inhalation of thoron gas in BALB/c mouse. We investigated the biological effects upon thoron inhalation on mouse organs with a focus on oxidative stress. These mice were divided into (4 random groups): sham inhalation, thoron inhalation for 1, 4 and 10 days. Various tissues (lung, liver and kidney) were then collected after the time points and subjected to various biochemical analyses. Immediately after inhalation, mouse tissues were excised for gamma spectrometry and 72 h post inhalation for biochemical assays. The gamma spectrometry counts and its subsequent calculation of the equivalent dose showed varied distribution in the lung, liver and kidney. Our results suggest that acute thoron inhalation showed a differential effect on the antioxidant function and exerted pathophysiological alterations via oxidative stress in organs at a higher dose. These findings suggested that thoron inhalation could alter the redox state in organs; however, its characteristics were dependent on the total redox system of the organs as well as the thoron concentration and inhalation time.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Animales , Ratones , Contaminantes Radiactivos del Aire/análisis , Radiación de Fondo , Contaminación del Aire Interior/análisis , Hijas del Radón/análisis , Monitoreo de Radiación/métodos , Radón/análisis , Dosis de Radiación
7.
Cell Biol Int ; 47(4): 742-753, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36573403

RESUMEN

Breast cancer (BC) remains one of the deadliest and frequently diagnosed metastatic cancers worldwide. Cancer stem cells (CSCs) are the cell population within the tumor niche, having an epithelial to mesenchymal (EMT) transition phenotype, high self-renewal, vigorous metastatic capacity, drug resistance, and tumor relapse. Identification of targets for induction of apoptosis is essential to provide novel therapeutic approaches in BC. Our earlier studies showed that Vitamin C induces apoptotic cell death by losing redox balance in TNBC CSCs. In this study, we have attempted to identify previously unrecognized CSC survival factors that can be used as druggable targets for bCSCs apoptosis regulators isolated from the TNBC line, MDA MB 468. After a thorough literature review, Oct-4 was identified as the most promising marker for its unique abundance in cancer and absence in normal cells and the contribution of Oct-4 to the sustenance of cancer cells. We then validated a very high expression of Oct-4 in the MDA MB 468 bCSCs population using flow-cytometry. The loss of Oct-4 was carried out using small interfering RNA (siRNA)-mediated knockdown in the bCSCs, followed by assessing for cellular apoptosis. Our results indicated that Oct-4 knockdown induced cell death, changes in cellular morphology, inhibited mammosphere formation, and positive for Annexin-V expression, thereby indicating the role of Oct-4 in bCSC survival. Moreover, our findings also suggest the direct interaction between Oct-4 and Vitamin C using in silico docking. This data, hence, contributes towards novel information about Oct-4 highlighting this molecule as a novel survival factor in bCSCs.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transición Epitelial-Mesenquimal , Vitaminas , Células Madre Neoplásicas/metabolismo , Ácido Ascórbico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Receptores de Hialuranos/metabolismo
8.
PLoS One ; 17(12): e0279261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548359

RESUMEN

Sodium Fluoride (NaF) can change the expression of skeletal muscle proteins. Since skeletal muscle is rich in mitochondrial and contractile (sarcomeric) proteins, these proteins are sensitive to the effects of NaF, and the changes are dose-and time-dependent. In the current study, we have analysed the effect of high concentrations of NaF (80ppm) on mouse skeletal muscle at two different time points, i.e., 15 days and 60 days. At the end of the experimental time, the animals were sacrificed, skeletal muscles were isolated, and proteins were extracted and subjected to bioinformatic (Mass Spectrometric) analysis. The results were analysed based on changes in different mitochondrial complexes, contractile (sarcomeric) proteins, 26S proteasome, and ubiquitin-proteasome pathway. The results showed that the mitochondrial proteins of complex I, II, III, IV and V were differentially regulated in the groups treated with 80ppm of NaF for 15 days and 60 days. The network analysis indicated more changes in mitochondrial proteins in the group treated with the higher dose for 15 days rather than 60 days. Furthermore, differential expression of (sarcomeric) proteins, downregulation of 26S proteasome subunits, and differential expression in proteins related to the ubiquitin-proteasome pathway lead to muscle atrophy. The differential expression might be due to the adaptative mechanism to counteract the deleterious effects of NaF on energy metabolism. Data are available via ProteomeXchange with identifier PXD035014.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Complejo de la Endopetidasa Proteasomal , Fluoruro de Sodio , Animales , Ratones , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Fluoruro de Sodio/farmacología , Ubiquitina/metabolismo
9.
Mar Drugs ; 20(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286414

RESUMEN

Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.


Asunto(s)
Sustitutos de Huesos , Células Madre Mesenquimatosas , Ingeniería de Tejidos/métodos , Osteogénesis , Andamios del Tejido/química , Regeneración Ósea , Fosfatasa Alcalina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Calcio , Preparaciones de Acción Retardada , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Durapatita/farmacología , Durapatita/química , Alginatos/farmacología , Alginatos/química , Óxidos/química , Proliferación Celular
10.
Chem Biol Interact ; 363: 109977, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35636501

RESUMEN

Thorium (232Th), long lived (14.05 billion years) most stable thorium isotope, is thrice naturally abundant than uranium. 232Th occurs as rocky deposits and black monazite sands on the earth's crust geographically distributed in coastal South India and other places globally. Monazite sand comprises of cerium and large quantities of radioactive thorium. The environmental hazard lies in monazite rich area being termed as High Background Radiation Area (HBRA). In this study, we mimicked the HBRA under controlled chamber conditions using thorium oxalate as a thorium source for BALB/c mice exposure. Furthermore, sequential radio-disintegration of 232 Th leads to thoron (220Rn), the noble gas and other daughter products/progeny predominantly via alpha decay/emissions. Such progeny tend to attach to aerosol and dust particles having potential inhalation hazard followed by alpha emissions and damages that we evaluated in mouse lung tissues post thoron inhalation. Secondly, along with the radio disintegration and alpha emission, high energy gamma is also generated that can travel to various distant organs through the systemic circulation, as significant findings of our study as damages to the liver and kidney. The mechanistic findings include the damages to the hematological, immunological and cellular antioxidant systems along with activation of canonical NF-κß pathway via double stranded DNA damage.


Asunto(s)
Contaminantes Radiactivos del Aire , Monitoreo de Radiación , Radón , Contaminantes Radiactivos del Aire/análisis , Animales , Antioxidantes , Riñón , Hígado , Pulmón/química , Ratones , Ratones Endogámicos BALB C , Hijas del Radón/análisis , Torio/análisis , Torio/toxicidad
12.
J Hazard Mater ; 432: 128654, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286933

RESUMEN

Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.


Asunto(s)
Agua Potable , Fluoruro de Sodio , Animales , Fluoruros/toxicidad , Hipertrofia/inducido químicamente , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fluoruro de Sodio/metabolismo , Fluoruro de Sodio/toxicidad , Serina-Treonina Quinasas TOR/metabolismo
13.
Diabetes Res Clin Pract ; 181: 109084, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34673084

RESUMEN

Human pluripotent stem cells (PSCs), both embryonic and induced pluripotent stem cells (iPSCs), have been differentiated into pancreatic ß isletsin vitrofor more than a decade. The idea is to get enough ß cells for cell transplantation for diabetics. Finding a standard cell therapy for diabetes is essential because of the logarithmic increase in the global population of people with diabetes and the insufficient availability of the human cadaveric pancreas. Moreover, with better insights into developmental biology, thein vitroß cell differentiation protocols have depended on thein vivoß cell organogenesis. Various protocols for pancreatic ß cell differentiation have been developed. Such protocols are based on the modulation of cell signalling pathways with growth factors, small molecules, RNAi approaches, directed differentiation using transcription factors, genome editing. Growth factor free differentiation protocols, epigenetic modulations, 3D differentiation approaches, and encapsulation strategies have also been reported for better glycemic control and endocrine modulations. Here, we have reviewed various aforementionedin vitroß cell differentiation protocols from human PSCs, their respective comparisons, challenges, past, present, and future. The literature has been reviewed primarily from PubMed from the year 2000 till date using the mentioned keywords.


Asunto(s)
Diabetes Mellitus , Células Madre Pluripotentes , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Organogénesis
14.
Mol Biol Rep ; 48(7): 5661-5673, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34254226

RESUMEN

Fluoride is a natural element essential in minute quantities in human's to maintain dental and skeletal health. However, the disease fluorosis manifests itself due to excessive fluoride intake mostly through drinking water and sometimes through food. At the cellular energetics level, fluoride is a known inhibitor of glycolysis. At the tissue level, the effect of fluoride has been more pronounced in the musculoskeletal systems due to its ability to retain fluoride. Fluoride alters dentinogenesis, thereby affecting the tooth enamel formation. In bones, fluoride alters the osteogenesis by replacing calcium, thus resulting in bone deformities. In skeletal muscles, high concentration and long term exposure to fluoride causes loss of muscle proteins leading to atrophy. Although fluorosis is quite a familiar problem, the exact molecular pathway is not yet clear. Extensive research on the effects of fluoride on various organs and its toxicity was reported. Indeed, it is clear that high and chronic exposure to fluoride causes cellular apoptosis. Accordingly, in this review, we have highlighted fluoride-mediated apoptosis via two vital pathways, mitochondrial-mediated and endoplasmic reticulum stress pathways. This review also elaborates on new cellular energetic, apoptotic pathways and therapeutic strategies targeted to treat fluorosis.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Fluoruros/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores , Desarrollo de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fluoruros/farmacología , Fluoruros/uso terapéutico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Oxidantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
15.
Stem Cell Rev Rep ; 17(5): 1754-1767, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33742350

RESUMEN

Stem cell antigen-1 (Sca-1) is a glycosyl-phosphatidylinositol-anchored membrane protein that is expressed in a sub-population of muscle stem and progenitor cell types. Reportedly, Sca-1 regulates the myogenic property of myoblasts and Sca-1-/- mice exhibited defective muscle regeneration. Although the role of Sca-1 in muscle development and maintenance is well-acknowledged, molecular composition of muscle derived Sca-1+ cells is not characterized. Here, we applied a high-resolution mass spectrometry-based workflow to characterize the proteomic landscape of mouse hindlimb skeletal muscle derived Sca-1+ cells. Furthermore, we characterized the impact of the cellular microenvironments on the proteomes of Sca-1+ cells. The proteome component of freshly isolated Sca-1+ cells (ex vivo) was compared with that of Sca-1+ cells expanded in cell culture (in vitro). The analysis revealed significant differences in the protein abundances in the two conditions reflective of their functional variations. The identified proteins were enriched in various biological pathways. Notably, we identified proteins related to myotube differentiation, myotube cell development and myoblast fusion. We also identified a panel of cell surface marker proteins that can be leveraged in future to enrich Sca-1+ cells using combinatorial strategies. Comparative analysis implicated the activation of various pathways leading to increased protein synthesis under in vitro condition. We report here the most comprehensive proteome map of Sca-1+ cells that provides insights into the molecular networks operative in Sca-1+ cells. Importantly, through our work we generated the proteomic blueprint of protein abundances significantly altered in Sca-1+ cells under ex vivo and in vitro conditions. The curated data can also be visualized at https://yenepoya.res.in/database/Sca-1-Proteomics .


Asunto(s)
Proteoma , Proteómica , Células Madre , Animales , Ratones , Músculo Esquelético
16.
J Cell Biochem ; 122(3-4): 349-366, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33135276

RESUMEN

Cancer stem cells (CSCs) are quiescent and self-renewing, having low levels of reactive oxygen species (ROS), and are responsible for cancer recurrence after chemotherapy and radiotherapy. However, the interplay between the ROS production and scavenging from the oxidative stress has never been studied in breast CSCs. In this present study, we have investigated the cellular energetics of two triple-negative breast cancer stem cells (MDA-MB-231 and MDA-MB-468) treated with two pharmacological doses of vitamin C (10 and 20 mM) that generated ROS. Our results indicate a differential behavior of ROS scavenging by both the CSCs. MDA-MB-468 CSCs exhibited higher resistance to ROS induced damage owing to the higher antioxidant activity, lower mitochondrial damage, and less decrease in membrane potential (ΔΨm ) as compared with MDA-MB-231 CSCs. Moreover, MDA-MB-231 CSCs exhibited an intrinsic apoptosis pathway by activating the cytochrome c, caspase-9, 3, 7, and cleaved PARP upon treatment with vitamin C. This data suggests a possible strategy for targeting breast CSCs using vitamin C. Taken together, the CSCs from MDA-MB-231 could be easily targeted by high/pharmacological doses of vitamin C (≥20 mM) thereby indicating a less robust internal antioxidant machinery.


Asunto(s)
Ácido Ascórbico/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo
17.
Int J Radiat Biol ; 96(11): 1362-1373, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32910703

RESUMEN

PURPOSE: Natural radiation is the major source of human exposure to ionizing radiation. About 52% of the total dose received from the high natural background radiations (HNBR) areas are due to inhalation dose from radon (222Rn)/thoron (220Rn) and their progenies. Hence, we reviewed the biological effects of 222Rn/220Rn and their progenies on lung tissue, and the possible role of lung stem cells in salvaging the damage caused by 222Rn/220Rn and their progenies. MATERIALS AND METHOD: We have extensively reviewed articles among several hits obtained in PubMed, Scopus, and Elsevier databases with keywords 'Radon/Thoron' OR Thoron progeny/Radon progeny OR 'Thoron/Radon inhalation and lungs', and proceed for further analysis. Also, databases related to oxidative damage to lung stem cells by radiation and the repair mechanisms involved by the lung stem cells were also included. RESULTS: Based on the existing epidemiological data on radon in residential buildings, we found that evidence exists on the association of radon induced lung carcinogenesis, but the data regarding the role of thoron induced lung damage is very limited and inconclusive. We also found that limited information has been provided based on ecological designs, leading to poor documentation of health statistics, in particular, organ-specific cancer rates. Finally, we tried to elucidate the possible mechanisms of lung injury induced by thoron inhalation and the probable role of lung stem cell toward the redemption of such oxidative damages. CONCLUSION: Existing epidemiological data on thoron inhalation and associated health outcomes are limited and inconclusive. Further, in vivo experiments, with respect to radon/thoron inhalation dose rate ranges corresponding to the HNBR areas will be helpful in understanding the cellular and molecular effects.


Asunto(s)
Pulmón/patología , Pulmón/efectos de la radiación , Radón/efectos adversos , Células Madre/citología , Animales , Radiación de Fondo/efectos adversos , Ambiente , Humanos , Células Madre/efectos de la radiación
18.
J Vis Exp ; (156)2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32116303

RESUMEN

The ocular surface is subjected to regular wear and tear due to various environmental factors. Exposure to UV-C radiation constitutes an occupational health hazard. Here, we demonstrate the exposure of primary stem cells from the mouse ocular surface to UV-C radiation. Reactive oxygen species (ROS) formation is the readout of the extent of oxidative stress/damage. In an experimental in vitro setting, it is also essential to assess the percentage of dead cells generated due to oxidative stress. In this article, we will demonstrate the 2',7'-Dichlorofluoresceindiacetate (DCFDA) staining of UV-C exposed mouse primary ocular surface stem cells and their quantification based on the fluorescent images of DCFDA staining. DCFDA staining directly corresponds to ROS generation. We also demonstrate the quantification of dead and live cells by simultaneous staining with propidium iodide (PI) and Hoechst 3332 respectively and the percentage of DCFDA (ROS positive) and PI positive cells.


Asunto(s)
Ojo/efectos de la radiación , Estrés Oxidativo/genética , Células Madre/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Ratones
19.
PLoS One ; 14(9): e0222240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31498830

RESUMEN

Calcium is the key macromineral having a role in skeletal structure and function, muscle contraction, and neurotransmission. Bone remodeling is maintained through a constant balance between calcium resorption and deposition. Calcium deficiency is resolved through calcium supplementation, and among the supplements, water-soluble organic molecules attracted great pharmaceutical interest. Calcium glucoheptonate is a highly water-soluble organic calcium salt having clinical use; however, detailed investigations on its biological effects are limited. We assessed the effects of calcium glucoheptonate on cell viability and proliferation of osteoblast-like MG-63 cells. Calcium uptake and mineralization were evaluated using Alizarin red staining of osteoblast-like MG-63 cells treated with calcium glucoheptonate. Expression of osteogenic markers were monitored by western blotting, immunofluorescence, and qRT-PCR assays. Increased proliferation and calcium uptake were observed in the MG-63 cells treated with calcium glucoheptonate. The treatment also increased the expression of osteopontin and osteogenic genes such as collagen-1, secreted protein acidic and cysteine rich (SPARC), and osteocalcin. Calcium glucoheptonate treatment did not exert any cytotoxicity on colorectal and renal epithelial cells, indicating the safety of the treatment. This is the first report with evidence for its beneficial effect for pharmaceutical use in addressing calcium deficiency conditions.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Azúcares Ácidos/farmacología , Células CACO-2 , Calcio/metabolismo , Línea Celular Tumoral , Células Cultivadas , Colágeno Tipo I/metabolismo , Células HEK293 , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteonectina/metabolismo , Osteopontina/metabolismo
20.
Mol Biotechnol ; 61(2): 145-152, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30474787

RESUMEN

The surface of the eye is continuously exposed to the harshness of the external environment. As a homeostatic mechanism for replenishing the worn off cells of the ocular surface, a balance is maintained via the role of ocular stem cells. However, under extreme conditions of harshness like exposure to bright and ultraviolet light, the ocular stem cells are unable to do the repair mechanisms resulting in severe impairment of vision and disturbances in the eye. This work reappraises the recent understandings of mechanisms of oxidative damages caused to the ocular stem cells by UV/bright light and their probable mitigation.


Asunto(s)
Ojo/efectos de la radiación , Estrés Oxidativo/fisiología , Transducción de Señal/efectos de la radiación , Células Madre/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Apoptosis/efectos de la radiación , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Ojo/citología , Humanos , Estrés Oxidativo/efectos de la radiación , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA