Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E454-E471, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054972

RESUMEN

Efficient and accurate methods to estimate insulin sensitivity (SI) and ß-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes (T2D). Existing methods range in sensitivity, input data, and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological than intravenous methods. However, current analytical methods for OGTT-derived SI and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic surrogate indices (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new insulin secretion and sensitivity (ISS) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. This model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. This model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including postchallenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts across the lifespan. The new model had a strong correlation with gold-standard estimates from intravenous glucose tolerance tests and insulin clamps. The ISS model has broad applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk.NEW & NOTEWORTHY The pathogenesis of type 2 diabetes (T2D) is determined by a balance between insulin sensitivity (SI) and ß-cell function (BCF), which can be determined by gold standard direct measurements or estimated by fitting differential equation models to oral glucose tolerance tests (OGTTs). We propose and validate a new differential equation model that is simpler to use than current models and requires less data while maintaining good correlation and agreement with gold standards. Matlab and Python code is freely available.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina/fisiología , Secreción de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Glucemia , Insulina/metabolismo , Glucosa , Técnica de Clampeo de la Glucosa
2.
J Clin Endocrinol Metab ; 109(5): 1361-1370, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37967247

RESUMEN

OBJECTIVE: Elevated rates of gluconeogenesis are an early pathogenic feature of youth-onset type 2 diabetes (Y-T2D), but targeted first-line therapies are suboptimal, especially in African American (AA) youth. We evaluated glucose-lowering mechanisms of metformin and liraglutide by measuring rates of gluconeogenesis and ß-cell function after therapy in AA Y-T2D. METHODS: In this parallel randomized clinical trial, 22 youth with Y-T2D-age 15.3 ± 2.1 years (mean ± SD), 68% female, body mass index (BMI) 40.1 ± 7.9 kg/m2, duration of diagnosis 1.8 ± 1.3 years-were randomized to metformin alone (Met) or metformin + liraglutide (Lira) (Met + Lira) and evaluated before and after 12 weeks. Stable isotope tracers were used to measure gluconeogenesis [2H2O] and glucose production [6,6-2H2]glucose after an overnight fast and during a continuous meal. ß-cell function (sigma) and whole-body insulin sensitivity (mSI) were assessed during a frequently sampled 2-hour oral glucose tolerance test. RESULTS: At baseline, gluconeogenesis, glucose production, and fasting and 2-hour glucose were comparable in both groups, though Met + Lira had higher hemoglobin A1C. Met + Lira had a greater decrease from baseline in fasting glucose (-2.0 ± 1.3 vs -0.6 ± 0.9 mmol/L, P = .008) and a greater increase in sigma (0.72 ± 0.68 vs -0.05 ± 0.71, P = .03). The change in fractional gluconeogenesis was similar between groups (Met + Lira: -0.36 ± 9.4 vs Met: 0.04 ± 12.3%, P = .9), and there were no changes in prandial gluconeogenesis or mSI. Increased glucose clearance in both groups was related to sigma (r = 0.63, P = .003) but not gluconeogenesis or mSI. CONCLUSION: Among Y-T2D, metformin with or without liraglutide improved glycemia but did not suppress high rates of gluconeogenesis. Novel therapies that will enhance ß-cell function and target the elevated rates of gluconeogenesis in Y-T2D are needed.

3.
J Physiol ; 601(24): 5655-5667, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37983196

RESUMEN

Pancreatic beta cells secrete insulin in response to plasma glucose. The ATP-sensitive potassium channel (KATP ) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell KATP locally produces the ATP that inhibits KATP activity. This proposal was largely based on the observation that applying phosphoenolpyruvate (PEP) and ADP to the cytoplasmic side of excised inside-out patches inhibited KATP . To test the relative contributions of local vs. mitochondrial ATP production, we recorded KATP activity using mouse beta cells and INS-1 832/13 cells. In contrast to prior reports, we could not replicate inhibition of KATP activity by PEP + ADP. However, when the pH of the PEP solutions was not corrected for the addition of PEP, strong channel inhibition was observed as a result of the well-known action of protons to inhibit KATP . In cell-attached recordings, perifusing either a PK activator or an inhibitor had little or no effect on KATP channel closure by glucose, further suggesting that PK is not an important regulator of KATP . In contrast, addition of mitochondrial inhibitors robustly increased KATP activity. Finally, by measuring the [ATP]/[ADP] responses to imposed calcium oscillations in mouse beta cells, we found that oxidative phosphorylation could raise [ATP]/[ADP] even when ADP was at its nadir during the burst silent phase, in agreement with our mathematical model. These results indicate that ATP produced by mitochondrial oxidative phosphorylation is the primary controller of KATP in pancreatic beta cells. KEY POINTS: Phosphoenolpyruvate (PEP) plus adenosine diphosphate does not inhibit KATP activity in excised patches. PEP solutions only inhibit KATP activity if the pH is unbalanced. Modulating pyruvate kinase has minimal effects on KATP activity. Mitochondrial inhibition, in contrast, robustly potentiates KATP activity in cell-attached patches. Although the ADP level falls during the silent phase of calcium oscillations, mitochondria can still produce enough ATP via oxidative phosphorylation to close KATP . Mitochondrial oxidative phosphorylation is therefore the main source of the ATP that inhibits the KATP activity of pancreatic beta cells.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Células Secretoras de Insulina/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacología , Piruvato Quinasa/metabolismo , Piruvato Quinasa/farmacología , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Mitocondrias/metabolismo
4.
Math Biosci ; 365: 109085, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37802364

RESUMEN

Electrical bursting oscillations in the ß-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and a deconstruction of the IOM that describes the various elements that have been added to the model over time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the publication of the Chay-Keizer model.

5.
bioRxiv ; 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503271

RESUMEN

Efficient and accurate methods to estimate insulin sensitivity (SI) and beta-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes. Many methods exist, ranging in input data and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological. However, current analytical methods for OGTT-derived SI and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic models (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new ISS (Insulin Secretion and Sensitivity) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. The model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. The model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including post-challenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts including individuals at high risk of prediabetes (adult women with a wide range of BMI and adolescents with obesity). The new model had strong correlation with gold-standard estimates from intravenous glucose tolerance tests and hyperinsulinemic-euglycemic clamp. The ISS model has broad clinical applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk.

6.
Diabetes Res Clin Pract ; 203: 110839, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37482221

RESUMEN

AIMS: The timing of increase in 1-hour PG and its utility as an earlier predictor of both prediabetes (PreDM) and type 2 diabetes (T2D) compared to 2-hour PG (2 h-PG) are unknown. To evaluate the timing of crossing of the 1 h-PG ≥ 155 mg/dl (8.6 mmol/L) for PreDM and 209 mg/dl (11.6 mmol/L) for T2D and respective current 2 h-PG thresholds of 140 mg/dl (7.8 mmol/L) and 200 mg/dl (11.1 mmol/L). METHODS: Secondary analysis of 201 Southwest Native Americans who were followed longitudinally for 6-10 years and had at least 3 OGTTs. RESULTS: We identified a subset of 43 individuals who first developed PreDM by both 1 h-PG and 2 h-PG criteria during the study. For most (32/43,74%), 1 h-PG ≥ 155 mg/dl was observed before 2 h-PG reached 140 mg/dl (median [IQR]: 1.7 [-0.25, 4.59] y; mean ± SEM: 5.3 ± 1.9 y). We also identified a subset of 33 individuals who first developed T2D during the study. For most (25/33, 75%), 1 h-PG reached 209 mg/dl earlier (median 1.0 [-0.56, 2.02] y; mean ± SEM: 1.6 ± 0.8 y) than 2 h-PG reached 200 mg/dl, diagnostic of T2D. CONCLUSIONS: 1 h-PG ≥ 155 mg/dl is an earlier marker of elevated risk for PreDM and T2D than 2 h-PG ≥ 140 mg/dl.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estado Prediabético , Humanos , Glucosa , Glucemia , Diabetes Mellitus Tipo 2/diagnóstico , Estado Prediabético/diagnóstico , Prueba de Tolerancia a la Glucosa
7.
Am J Physiol Endocrinol Metab ; 324(6): E477-E487, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074988

RESUMEN

The standard model for Ca2+ oscillations in insulin-secreting pancreatic ß cells centers on Ca2+ entry through voltage-activated Ca2+ channels. These work in combination with ATP-dependent K+ channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the ß cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model.


Asunto(s)
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Calcio/metabolismo , Insulina/metabolismo , Señalización del Calcio , Secreción de Insulina
8.
Glia ; 71(2): 205-228, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36093576

RESUMEN

The mammalian pituitary gland is a complex organ consisting of hormone-producing cells, anterior lobe folliculostellate cells (FSCs), posterior lobe pituicytes, vascular pericytes and endothelial cells, and Sox2-expressing stem cells. We present single-cell RNA sequencing and immunohistofluorescence analyses of pituitary cells of adult female rats with a focus on the transcriptomic profiles of nonhormonal cell types. Samples obtained from whole pituitaries and separated anterior and posterior lobe cells contained all expected pituitary resident cell types and lobe-specific vascular cell subpopulations. FSCs and pituicytes expressed S100B, ALDOC, EAAT1, ALDH1A1, and VIM genes and proteins, as well as other astroglial marker genes, some common and some cell type-specific. We also found that the SOX2 gene and protein were expressed in ~15% of pituitary cells, including FSCs, pituicytes, and a fraction of hormone-producing cells, arguing against its stem cell specificity. FSCs comprised two Sox2-expressing subclusters; FS1 contained more cells but lower genetic diversity, while FS2 contained proliferative cells, shared genes with hormone-producing cells, and expressed genes consistent with stem cell niche formation, regulation of cell proliferation and stem cell pluripotency, including the Hippo and Wnt pathways. FS1 cells were randomly distributed in the anterior and intermediate lobes, while FS2 cells were localized exclusively in the marginal zone between the anterior and intermediate lobes. These data indicate the identity of the FSCs as anterior pituitary-specific astroglia, with FS1 cells representing differentiated cells equipped for classical FSC roles and FS2 cells exhibiting additional stem cell-like features.


Asunto(s)
Adenohipófisis , Ratas , Femenino , Animales , Adenohipófisis/metabolismo , Astrocitos , Células Endoteliales , Células Madre , Hormonas/metabolismo , Mamíferos
9.
Artículo en Inglés | MEDLINE | ID: mdl-36177190

RESUMEN

Recent single-cell RNA sequencing has offered an unprecedented view of pituitary cell transcriptomic profiles. In this review, these new data are briefly discussed and compared with the classical literature, focusing on pituitary corticotrophs. These cells are introduced by discussing their marker genes, followed by a review of G protein-coupled receptor gene expression, heterotrimeric G protein genes, and genes encoding signaling pathways downstream of G proteins: adenylate cyclases, phosphodiesterases, phospholipases, and protein kinases. The expression patterns of enzyme-linked plasma membrane and nuclear hormone receptor genes was also analyzed. The overview of these selected groups of genes sheds new light on corticotrophic receptors and their signaling pathways and provides guidance for further basic and clinical research by identifying genes that not been studied so far.

10.
Biophys J ; 121(8): 1449-1464, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35300967

RESUMEN

ATP-sensitive K+ (K(ATP)) channels were first reported in the ß-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet ß-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in ß-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.


Asunto(s)
Señalización del Calcio , Islotes Pancreáticos , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Glucosa/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Potenciales de la Membrana/fisiología , Ratones
11.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-35212266

RESUMEN

The pancreatic islets of Langerhans are biomedically important because they are home to the beta cells that secrete insulin and are hence important for understanding diabetes. They are also an important case study for the mechanisms of bursting oscillations and how these oscillations emerge from the electrical coupling of highly heterogeneous cells. Early work has pointed to a voting/democratic paradigm, where the islet properties are a nonlinear average of the cell properties, with no 'conductor leading the orchestra'. Recent experimental work has uncovered new facets of this heterogeneity, and has identified small world networks dominated by a small subset of cells with a high degree of functional connectivity, assessed via correlations of calcium oscillations. It has also been suggested that these connectivity hubs act as pacemakers necessary for islet oscillations. We reviewed modeling studies that have confirmed the existence of small worldness, and we did not find evidence for obligatory pacemakers. We conclude that democracy rather than oligarchy remains the most likely organizing principle of the islets.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Calcio/metabolismo , Señalización del Calcio , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo
12.
Front Physiol ; 12: 781581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925070

RESUMEN

Insulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic ß-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca2+ initiated by bursts of electrical activity. In parallel with these electrical and Ca2+ oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar. A key question that remains unresolved is whether the electrical oscillations are responsible for the metabolic oscillations via the effects of Ca2+, or whether the metabolic oscillations are responsible for the electrical oscillations due to the effects of ATP on ATP-sensitive ion channels? Mathematical modeling is a useful tool for addressing this and related questions as modeling can aid in the design of well-focused experiments that can test the predictions of particular models and subsequently be used to improve the models in an iterative fashion. In this article, we discuss a recent mathematical model, the Integrated Oscillator Model (IOM), that was the product of many years of development. We use the model to demonstrate that the relationship between calcium and metabolism in beta cells is symbiotic: in some contexts, the electrical oscillations drive the metabolic oscillations, while in other contexts it is the opposite. We provide new insights regarding these results and illustrate that what might at first appear to be contradictory data are actually compatible when viewed holistically with the IOM.

13.
Front Physiol ; 12: 601894, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967818

RESUMEN

We address a problem with the Bergman-Cobelli Minimal Model, which has been used for 40 years to estimate S I during an intravenous glucose tolerance test (IVGTT). During the IVGTT blood glucose and insulin concentrations are measured in response to an acute intravenous glucose load. Insulin secretion is often assessed by the area under the insulin curve during the first few minutes (Acute Insulin Response, AIR). The issue addressed here is that we have found in simulated IVGTTs, representing certain contexts, Minimal Model estimates of S I are inversely related to AIR, resulting in artifactually lower S I . This may apply to Minimal Model studies reporting lower S I in Blacks than in Whites, a putative explanation for increased risk of T2D in Blacks. The hyperinsulinemic euglycemic clamp (HIEC), the reference method for assessing insulin sensitivity, by contrast generally does not show differences in insulin sensitivity between these groups. The reason for this difficulty is that glucose rises rapidly at the start of the IVGTT and reaches levels independent of S I , whereas insulin during this time is determined by AIR. The minimal model in effect interprets this combination as low insulin sensitivity even when actual insulin sensitivity is unchanged. This happens in particular when high AIR results from increased number of readily releasable insulin granules, which may occur in Blacks. We conclude that caution should be taken when comparing estimates of S I between Blacks and Whites.

14.
J Clin Endocrinol Metab ; 104(1): 181-192, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30260396

RESUMEN

Context: Postprandial hyperinsulinemia might be an important cardiometabolic risk determinant in black compared with white women. However, the contributions of insulin clearance and ß-cell function to racial differences in postprandial insulin response are unknown. Objective: To compare, by race and menopause, early insulin response to oral and intravenous glucose and to measure postprandial intact glucagon-like peptide 1 (GLP-1) concentrations, insulin clearance, and ß-cell function. Design and Participants: 119 federally employed women without diabetes [87 premenopausal (52 black, 35 white) and 32 postmenopausal (19 black, 13 white)] underwent an oral glucose tolerance test, insulin-modified frequently sampled intravenous glucose test (IM-FSIGT), and mixed meal tolerance test (MMTT). Outcome Measures: Early insulin response was measured as follows: (i) insulinogenic index (oral glucose tolerance test); (ii) acute insulin response to glucose (IM-FSIGT); and (iii) ratio of incremental insulin/glucose area under the curve in the first 30 minutes of the MMTT. Insulin clearance was assessed during the IM-FSIGT and MMTT. During the MMTT, intact GLP-1 was measured and ß-cell function assessed using the insulin secretion rate and ß-cell responsivity indexes. Results: Black pre-menopausal and postmenopausal women had a greater insulin response and lower insulin clearance and greater dynamic ß-cell responsivity (P ≤ 0.05 for all). No differences were found in the total insulin secretion rates or intact GLP-1 concentrations. Conclusions: Greater postprandial hyperinsulinemia in black pre-menopausal and postmenopausal women was associated with lower hepatic insulin clearance and heightened ß-cell capacity to rapid changes in glucose, but not to higher insulin secretion. The relationship of increased ß-cell secretory capacity, reduced insulin clearance, and ambient hyperinsulinemia to the development of cardiometabolic disease requires further investigation.


Asunto(s)
Hiperglucemia/epidemiología , Adulto , Población Negra , Composición Corporal , Estudios de Cohortes , Femenino , Péptido 1 Similar al Glucagón/sangre , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/sangre , Insulina/sangre , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Menopausia , Persona de Mediana Edad , Periodo Posprandial , Población Blanca
15.
Diabetes ; 67(3): 351-359, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29463575

RESUMEN

Insulin secretion from pancreatic islet ß-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets.


Asunto(s)
Señalización del Calcio , Glucólisis , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Biológicos , Regulación Alostérica , Animales , Glucemia/metabolismo , Simulación por Computador , Activación Enzimática , Fructosadifosfatos/metabolismo , Humanos , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Cinética , Fosfofructoquinasa-1 Tipo Muscular/metabolismo , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo
16.
Clin Endocrinol (Oxf) ; 87(5): 484-491, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28681942

RESUMEN

CONTEXT: Morphological characteristics of the glucose curve during an oral glucose tolerance test (OGTT) (time to peak and shape) may reflect different phenotypes of insulin secretion and action, but their ability to predict diabetes risk is uncertain. OBJECTIVE: To compare the ability of time to glucose peak and curve shape to detect prediabetes and ß-cell function. DESIGN AND PARTICIPANTS: In a cross-sectional evaluation using an OGTT, 145 adults without diabetes (age 42±9 years (mean±SD), range 24-62 years, BMI 29.2±5.3 kg/m2 , range 19.9-45.2 kg/m2 ) were characterized by peak (30 minutes vs >30 minutes) and shape (biphasic vs monophasic). MAIN OUTCOME MEASURES: Prediabetes and disposition index (DI)-a marker of ß-cell function. RESULTS: Prediabetes was diagnosed in 36% (52/145) of participants. Peak>30 minutes, not monophasic curve, was associated with increased odds of prediabetes (OR: 4.0 vs 1.1; P<.001). Both monophasic curve and peak>30 minutes were associated with lower DI (P≤.01). Time to glucose peak and glucose area under the curves (AUC) were independent predictors of DI (adjR2 =0.45, P<.001). CONCLUSION: Glucose peak >30 minutes was a stronger independent indicator of prediabetes and ß-cell function than the monophasic curve. Time to glucose peak may be an important tool that could enhance prediabetes risk stratification.


Asunto(s)
Prueba de Tolerancia a la Glucosa/normas , Estado Prediabético/diagnóstico , Adulto , Área Bajo la Curva , Estudios Transversales , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Tiempo , Adulto Joven
17.
J Math Neurosci ; 7(1): 4, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28647913

RESUMEN

Low frequency firing is modeled by Type 1 neurons with a SNIC, but, because of the vertical slope of the square-root-like f-I curve, low f only occurs over a narrow range of I. When an adaptive current is added, however, the f-I curve is linearized, and low f occurs robustly over a large I range. Ermentrout (Neural Comput. 10(7):1721-1729, 1998) showed that this feature of adaptation paradoxically arises from the SNIC that is responsible for the vertical slope. We show, using a simplified Hindmarsh-Rose neuron with negative feedback acting directly on the adaptation current, that whereas a SNIC contributes to linearization, in practice linearization over a large interval may require strong adaptation strength. We also find that a type 2 neuron with threshold generated by a Hopf bifurcation can also show linearization if adaptation strength is strong. Thus, a SNIC is not necessary. More fundamental than a SNIC is stretching the steep region near threshold, which stems from sufficiently strong adaptation, though a SNIC contributes if present. In a more realistic conductance-based model, Morris-Lecar, with negative feedback acting on the adaptation conductance, an additional assumption that the driving force of the adaptation current is independent of I is needed. If this holds, strong adaptive conductance is both necessary and sufficient for linearization of f-I curves of type 2 f-I curves.

18.
J Clin Endocrinol Metab ; 102(8): 2905-2913, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541544

RESUMEN

Context: There is a substantial interindividual variation in the association between glycated hemoglobin (HbA1c) and plasma glucose concentrations. Its impact on cardiovascular disease (CVD) has not been comprehensively evaluated. Objective: We examined associations between interindividual variations in HbA1c, which was estimated as the hemoglobin glycation index (HGI), and CVD. Design, Setting, and Participants: We performed a cross-sectional analysis with 1248 treatment-naïve subjects with prediabetes or diabetes. The HGI was defined as the measured HbA1c minus predicted HbA1c, which was calculated from the linear relationship between HbA1c and fasting plasma glucose levels. Main Outcome Measures: The prevalence of composite and individual CVDs including coronary artery disease (CAD), stroke, and peripheral artery disease (PAD). Results: The overall prevalence of composite CVD was 10.3% and individual prevalences of CAD, stroke, and PAD were 5.7%, 5.1%, and 1.3%, respectively. All prevalences significantly increased from the first to third tertile of HGI. In multivariate analysis, the highest HGI tertile was independently associated with composite CVD [odds ratio (95% confidence interval): 2.81 (1.59-4.98)], and individual CAD [2.30 (1.12-4.73)], stroke [3.40 (1.50-7.73)], and PAD [6.37 (1.18-34.33)] after adjustment for other CVD risk factors including HbA1c levels. Two consecutive measurements of HGI obtained on different days showed good correlation (r = 0.651, P < 0.001) and high concordance rate in the tertile classification (69.1%). Conclusions: High HGI was independently associated with overall and individual CVDs. This result suggests that discrepancy between HbA1c and fasting glucose levels can reflect vascular health in subjects with impaired glucose metabolism.


Asunto(s)
Glucemia/metabolismo , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Intolerancia a la Glucosa/metabolismo , Hemoglobina Glucada/metabolismo , Estado Prediabético/metabolismo , Adulto , Anciano , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/metabolismo , Estudios Transversales , Diabetes Mellitus/epidemiología , Femenino , Intolerancia a la Glucosa/epidemiología , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/epidemiología , Enfermedad Arterial Periférica/metabolismo , Estado Prediabético/epidemiología , Prevalencia , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/metabolismo
20.
Endocrinology ; 157(2): 624-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26709417

RESUMEN

Type 2 diabetes (T2D) is generally thought to result from the combination of 2 metabolic defects, insulin resistance, which increases the level of insulin required to maintain glucose within the normal range, and failure of insulin-secreting pancreatic ß-cells to compensate for the increased demand. We build on a mathematical model pioneered by Topp and colleagues to elucidate how compensation succeeds or fails. Their model added a layer of slow negative feedback to the classic insulin-glucose loop in the form of a slow, glucose-dependent birth and death law governing ß-cell mass. We add to that model regulation of 2 aspects of ß-cell function on intermediate time scales. The model quantifies the relative contributions of insulin action and insulin secretion defects to T2D and explains why prevention is easier than cure. The latter is a consequence of a threshold separating the normoglycemic and diabetic states (bistability), which also underlies the success of bariatric surgery and acute caloric restriction in rapidly reversing T2D. The threshold concept gives new insight into "Starling's Law of the Pancreas," whereby insulin secretion is higher for prediabetics and early diabetics than for normal individuals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Modelos Teóricos , Animales , Cirugía Bariátrica , Restricción Calórica , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/prevención & control , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/prevención & control , Diabetes Mellitus Tipo 2/terapia , Dieta Alta en Grasa , Femenino , Resistencia a la Insulina , Obesidad/complicaciones , Obesidad/patología , Ratas , Ratas Zucker , Inducción de Remisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA