Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Org Lett ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133198

RESUMEN

The synthesis of medicinally interesting aryldifluoromethylated compounds has drawn significant research attention in recent years. Herein, we report an unprecedented iron-mediated process for the selective defluorination of trifluoromethylarenes to achieve the 1,2-difluoroalkylthiolation of alkenes. Preliminary mechanistic studies revealed that thiolate anion, trifluoromethylarene, and iron cation could form an electron donor-acceptor (EDA) complex, which induced selective defluorination and then difunctionalization of alkenes to obtain aryldifluoromethylated products. The generated aryldifluoromethylated compounds make it difficult to form an EDA complex again, thus avoiding excessive defluorination. This conversion has concise and ambient reaction conditions and provides an alternative solution for obtaining difluorobenzylic intermediates.

2.
RSC Adv ; 14(25): 17832-17842, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38836169

RESUMEN

The implementation of a dual-source water supply system offers an increased level of reliability in water provision; however, intricate hydraulic dynamics introduce apprehensions regarding water safety at the hydraulic junction. In this study, we gathered data of the water quality at the hydraulic junction of a dual-source water supply system (plant A and plant B, sampling site A10 was near plant A, and sampling site A12 was near plant B) for one year in Suzhou Industrial Park. Our findings indicated that seasonal variations and water temperature exerted significant influence on the composition and formation of disinfection byproducts (DBPs). Notably, during the warmer months spanning from June to September, the concentration of trihalomethanes was the highest at the hydraulic junction, whereas the concentration of residual chloride was the lowest. The analysis on DBPs revealed that more Br-containing precursors in water in plant A resulted in the accumulation of more Br-containing DBPs at A10, whereas the highest concentration of Cl-containing DBPs accumulated at A12. The analysis of the dissolved organic matter (DOM) composition indicated an increase in concentration at A10 and A12 compared with that in plant A and plant B. The highest concentration of humic acids was observed at A10, whereas A12 accumulated the highest concentration of aromatic proteins and microbial metabolites. Owing to the fluctuations in water consumption patterns at the hydraulic junction, the water quality was susceptible to variability, thereby posing an elevated risk. Consequently, extensive efforts are warranted to ensure the maintenance of water safety and quality at this critical interface.

3.
J Med Chem ; 67(11): 8877-8901, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38776379

RESUMEN

Designing selective PARP-1 inhibitors has become a new strategy for anticancer drug development. By sequence comparison of PARP-1 and PARP-2, we identified a possible selective site (S site) consisting of several different amino acid residues of α-5 helix and D-loop. Targeting this S site, 140 compounds were designed, synthesized, and characterized for their anticancer activities and mechanisms. Compound I16 showed the highest PARP-1 enzyme inhibitory activity (IC50 = 12.38 ± 1.33 nM) and optimal selectivity index over PARP-2 (SI = 155.74). Oral administration of I16 (25 mg/kg) showed high inhibition rates of Hela and SK-OV-3 tumor cell xenograft models, both of which were higher than those of the oral positive drug Olaparib (50 mg/kg). In addition, I16 has an excellent safety profile, without significant toxicity at high oral doses. These findings provide a novel design strategy and chemotype for the development of safe, efficient, and highly selective PARP-1 inhibitors.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratones , Relación Estructura-Actividad , Línea Celular Tumoral , Ratones Desnudos , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Células HeLa , Simulación del Acoplamiento Molecular , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Ftalazinas/farmacología , Ftalazinas/química , Ftalazinas/síntesis química
4.
Org Lett ; 26(15): 2913-2917, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38569099

RESUMEN

C-C σ-bond cleavage and reconstruction is a significant tool for structural modification in synthetic chemistry but it remains a formidable challenge to perform on unstrained skeletons. Herein, we describe a radical addition-enabled C-C σ-bond cleavage/reconstruction reaction of unstrained allyl ketones to access various functional indanones bearing a benzylic quaternary center. The synthetic utility of this method has been showcased by the first total synthesis of carexane L, an indanone-based natural product.

5.
Commun Biol ; 7(1): 199, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368473

RESUMEN

Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.


Asunto(s)
Ferroptosis , Radical Hidroxilo , Ratones , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Fenoles/farmacología , Floroglucinol/farmacología , Mamíferos
6.
Sci Bull (Beijing) ; 69(3): 345-353, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38044193

RESUMEN

The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and pharmaceuticals. In this endeavour, as a photocatalyst- and metal-free process, the electron donor-acceptor (EDA) strategy has not been well explored. Here we report an approach to aliphatic carbon-hydrogen bond diversification through an EDA complex constituted by HCl and SIV=O groups. As an efficient hydrogen atom transfer (HAT) reagent, chlorine radical can be produced via a proton-coupled electron transfer process in this system. Based on this unusual path, a photo-promoted versatile aliphatic C-H functionalization is developed without photo- and metal-catalysts, including thiolation, arylation, alkynylation, and allylation. This conversion has concise and ambient reaction conditions, good functional group tolerance, and substrate diversity, and provides an alternative solution for the high value-added utilization of bulk light alkanes.

7.
J Med Chem ; 66(24): 16464-16483, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38088333

RESUMEN

Cancer is a major threat to the lives and health of people around the world, and the development of effective antitumor drugs that exhibit fewer toxic effects is an important aspect of cancer treatment. PARP inhibitors are antitumor drugs that target pathways involved in DNA-damage repair. The currently approved PARP inhibitors include olaparib, niraparib, rucaparib, talazoparib, fuzuloparib, and pamiparib. Hematological toxicities associated with the simultaneous inhibition of PARP-1 and PARP-2 have limited the clinical applications of these drugs. The present review introduces the necessity for research on the development of selective PARP-1 inhibitors from the perspective of structural and functional mechanisms of PARP-1 inhibition. A review of recently reported selective PARP-1 inhibitors provides the foundation for exploring novel strategies for designing selective PARP-1 inhibitors from the perspective of structure-activity relationships combined with computer simulations.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Reparación del ADN , Neoplasias/tratamiento farmacológico
8.
Eur J Med Chem ; 260: 115781, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669595

RESUMEN

Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Factor 4G Eucariótico de Iniciación , Serina-Treonina Quinasas TOR , Neoplasias/tratamiento farmacológico , Factor 4E Eucariótico de Iniciación
9.
Food Chem Toxicol ; 177: 113844, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244599

RESUMEN

Silk fibroin (SF) has excellent biocompatibility and biodegradability as a biomaterial. The purity and molecular weight distribution of silk fibroin peptide (SFP) make it more suitable for medical application. In this study, SFP nanofibers (molecular weight ∼30kD) were prepared through CaCl2/H2O/C2H5OH solution decomposition and dialysis, and adsorbed naringenin (NGN) to obtain SFP/NGN NFs. In vitro results showed that SFP/NGN NFs increased the antioxidant activity of NGN and protected HK-2 cells from cisplatin-induced damage. In vivo results also showed that SFP/NGN NFs protected mice from cisplatin-induced acute kidney injury (AKI). The mechanism results showed that cisplatin induced mitochondrial damage, as well as increased mitophagy and mtDNA release, which activated the cGAS-STING pathway and induced the expression of inflammatory factors such as IL-6 and TNF-α. Interestingly, SFP/NGN NFs further activated mitophagy and inhibited mtDNA release and cGAS-STING pathway. Demonstrated that mitophagy-mtDNA-cGAS-STING signal axis was involved in the kidney protection mechanism of SFP/NGN NFs. In conclusion, our study confirmed that SFP/NGN NFs are candidates for protection of cisplatin-induced AKI, which is worthy of further study.


Asunto(s)
Lesión Renal Aguda , Fibroínas , Nanofibras , Animales , Ratones , ADN Mitocondrial/metabolismo , Cisplatino/toxicidad , Nucleotidiltransferasas/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Péptidos/farmacología , Péptidos/química
10.
Chem Commun (Camb) ; 59(45): 6893-6896, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199088

RESUMEN

Herein we develop a Ni-catalyzed defluorinative cross-electrophile coupling of gem-difluoroalkenes with alkenyl electrophiles that allowed the generation of C(sp2)-C(sp2) bonds. The reaction provided various monofluoro 1,3-dienes with broad functional group compatibility and excellent stereoselectivity. Synthetic transformations and applications to the modification of complex compounds were also demonstrated.

11.
Mar Drugs ; 21(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827168

RESUMEN

Antarctic krill (Euphausia superba) of the Euphausiidae family comprise one of the largest biomasses in the world and play a key role in the Antarctic marine ecosystem. However, the study of E. superba-derived microbes and their secondary metabolites has been limited. Chemical investigation of the secondary metabolites of the actinomycetes Nocardiopsis sp. LX-1 (in the family of Nocardiopsaceae), isolated from E. superba, combined with molecular networking, led to the identification of 16 compounds a-p (purple nodes in the molecular network) and the isolation of one new pyrroline, nocarpyrroline A (1), along with 11 known compounds 2-12. The structure of the new compound 1 was elucidated by extensive spectroscopic investigation. Compound 2 exhibited broad-spectrum antibacterial activities against A. hydrophila, D. chrysanthemi, C. terrigena, X. citri pv. malvacearum and antifungal activity against C. albicans in a conventional broth dilution assay. The positive control was ciprofloxacin with the MIC values of <0.024 µM, 0.39 µM, 0.39 µM, 0.39 µM, and 0.20 µM, respectively. Compound 1 and compounds 7, 10, and 11 displayed antifungal activities against F. fujikuroi and D. citri, respectively, in modified agar diffusion test. Prochloraz was used as positive control and showed the inhibition zone radius of 17 mm and 15 mm against F. fujikuroi and D. citri, respectively. All the annotated compounds a-p by molecular networking were first discovered from the genus Nocardiopsis. Nocarpyrroline A (1) features an unprecedented 4,5-dihydro-pyrrole-2-carbonitrile substructure, and it is the first pyrroline isolated from the genus Nocardiopsis. This study further demonstrated the guiding significance of molecular networking in the research of microbial secondary metabolites.


Asunto(s)
Actinobacteria , Euphausiacea , Animales , Nocardiopsis , Euphausiacea/química , Actinomyces , Antifúngicos , Ecosistema , Pirroles , Regiones Antárticas
12.
Mol Pharm ; 20(2): 1189-1201, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647568

RESUMEN

Excessive acetaminophen (APAP) induces excess reactive oxygen species (ROS), leading to liver damage. Pterostilbene (PTE) has excellent antioxidant and anti-inflammatory activities, but poor solubility limits its biological activity. In this study, we prepared PTE-loaded Soluplus/poloxamer 188 mixed micelles (PTE-MMs), and the protective mechanism against APAP-induced liver injury was investigated. In vitro results showed that PTE-MMs protected H2O2-induced HepG2 cell proliferation inhibition, ROS accumulation, and mitochondrial membrane potential destruction. Immunofluorescence results indicated that PTE-MMs significantly inhibited H2O2-induced DNA damage and cGAS-STING pathway activation. For in vivo protection studies, PTE-MMs (25 and 50 mg/kg) were administered orally for 5 days, followed by APAP (300 mg/kg). The results showed that APAP significantly induced injury in liver histopathology as well as an increase in serum aspartate aminotransferase and alanine aminotransferase levels. Moreover, the above characteristics of APAP-induced acute liver injury were inhibited by PTE-MMs. In addition, APAP-induced changes in the activities of antioxidant enzymes such as SOD and GSH in liver tissue were also inhibited by PTE-MMs. Immunohistochemical results showed that PTE-MMs inhibited APAP-induced DNA damage and cGAS-STING pathway activation in liver tissues. For in vivo therapeutic effect study, mice were first given APAP (300 mg/kg), followed by oral administration of PTE-MMs (50 mg/kg) for 3 days. The results showed that PTE-MMs exhibited promising therapeutic effects on APAP-induced acute liver injury. In conclusion, our study shows that the Soluplus/poloxamer 188 MM system has the potential to enhance the biological activity of PTE in the protection and therapeutic of liver injury.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ratones , Acetaminofén/toxicidad , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Micelas , Estrés Oxidativo , Poloxámero , Especies Reactivas de Oxígeno/metabolismo
13.
Mol Pharm ; 20(1): 136-146, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36326450

RESUMEN

Acute kidney injury (AKI) is the most common side effect of the anti-cancer drug cisplatin, and currently, no effective preventive measures are available in clinical practice. Oxidative stress and DNA damage mechanisms may be involved in cisplatin-induced AKI. In this study, we prepared Kolliphor HS15-based myricetin-loaded (HS15-Myr) nanomicelles and explored the mechanism of protection against cisplatin-induced AKI. In vitro results showed that the HS15-Myr nanomicelles enhanced the antioxidant activity of myricetin (Myr) and inhibited cisplatin-induced proliferation inhibition of HK-2 cells. Moreover, the HS15-Myr nanomicelles inhibited cisplatin-induced reactive oxygen species accumulation, mitochondrial membrane potential reduction, and DNA damage, which might be related to the inhibition of the cyclic GMP-AMP synthase (cGAS)─stimulating interferon gene (STING) signaling pathway. In vivo results in mice showed that the significant reductions in body weight and renal indices and the increased blood urea nitrogen and serum creatinine levels induced by cisplatin could be significantly reversed by pretreating with the HS15-Myr nanomicelles. Furthermore, nanomicelle pretreatment significantly altered the activities of antioxidant enzymes (e.g., GSH, MDA, and SOD) induced by cisplatin. In addition, cisplatin-induced inflammatory responses in mouse kidney tissue were found to be inhibited by pretreatment with HS15-Myr nanomicelles, such as IL-1ß and TNF-α expression. The nanomicelles also significantly inhibited cisplatin-induced activation of the DNA damage-cGAS-STING pathway in kidney tissues. Together, our findings suggest that Myr-loaded nanomicelles are potential nephroprotective drugs.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Ratones , Cisplatino/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Transducción de Señal , Antioxidantes/uso terapéutico , Daño del ADN , Nucleotidiltransferasas/farmacología , Nucleotidiltransferasas/uso terapéutico , Riñón
14.
Sci Adv ; 8(49): eabq8596, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490351

RESUMEN

Radical-mediated 1,2-difunctionalization of olefins is a well-established synthetic technique widely used in the rapid construction of structurally diverse molecular entities. However, radical-mediated 1,3-difunctionalization reactions are rare, and the substrates are generally limited to strained skeletons. Here, we report a practical approach for 1,3-difunctionalization of available ß,γ-unsaturated ketones via a radical cascade process including visible light-irradiated radical addition, thermodynamic stability-driven 1,2-carbonyl migration from unactivated all-carbon quaternary center, and terminal C-radical varied transformations. Various highly functionalized alkyl skeletons with different valuable functional groups at positions 1 and 3 and the carbonyl group at position 2 have been synthesized through a radical chain pathway or Cu-catalyzed Ritter-type reaction. Moreover, this protocol provides a real case of diversity-oriented radical rearrangement for drug discovery. We identified a previously unknown chemotype of dual inhibitors for hypoxia-inducible factor (HIF) and WNT signaling pathways from products. These small-molecule inhibitors could suppress HIF and WNT signaling-dependent HCT116 cell growth in 2D and 3D culture systems.

15.
Int J Biol Macromol ; 223(Pt A): 1083-1093, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36372101

RESUMEN

Fucoidan (FU) is a natural sulfated polysaccharide with certain biological activity and has been shown to be an excellent nano-delivery material. In this study, ferulic acid (FA)-loaded FU nanoparticles (FA/FU NPs) were prepared and their nephroprotective mechanism was investigated. With a particle size of 158.6 ± 4.5 nm, FA/FU NPs increased the antioxidant activity of FA in vitro, possibly related to the increased dispersity of FA. In vitro results demonstrated that FA/FU NPs significantly protected human renal proximal tubule (HK-2) cells from cisplatin-induced damage, possibly by suppressing cisplatin-induced DNA damage and activating the cGAS-STING pathway. Furthermore, in vivo experiments confirmed that FA/FU NPs protected mice from cisplatin-induced acute kidney injury (AKI). Mechanistic studies confirmed that FA/FU NPs exerted nephroprotective effects by reducing MDA activity and increasing GSH and SOD activity. Our results demonstrated the potential of FU for delivering poorly soluble drug FA and protecting against cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Nanopartículas , Ratones , Humanos , Animales , Cisplatino/efectos adversos , Ácidos Cumáricos/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Polisacáridos/efectos adversos
16.
Int J Pharm ; 626: 122161, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058409

RESUMEN

Silk fibroin (SF) is a natural polymeric biomaterial widely used in the preparation of drug delivery systems. Herein, silk fibroin peptide (SFP) was self-assembled into nanofibers, encapsulated a poorly water-soluble drug baicalein (SFP/BA NFs), and then used to protect against cisplatin-induced acute kidney injury (AKI). Specifically, the SFP/BA NFs significantly enhanced the aqueous dispersity, storage stability, and in vitro antioxidant activity of BA. SFP/BA NFs increased the drug uptake and localization to mitochondria. In vitro results demonstrated that SFP/BA NFs can relieve the cisplatin-induced HK-2 cell damage, and inhibit the cisplatin-induced accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) disruption. Mechanism studies demonstrated that SFP/BA NFs may exert nephroprotective effects by inhibiting both the cisplatin-induced DNA damage and the cGAS/STING pathway activation. In vivo results showed that cisplatin treatment resulted in decreased body weight, increased serum creatinine (SCr), and increased blood urea nitrogen (BUN) levels, while SFP/BA NFs reversed the above symptoms. Furthermore, SFP/BA NFs reversed the cisplatin-induced abnormal changes of antioxidant enzymes (e.g., SOD and GSH), and inhibited the cisplatin-induced DNA damage as well as the activation of cGAS/TING. Above all, our results revealed the potential of SFP/BA NFs to protect against cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Fibroínas , Nanofibras , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis , Materiales Biocompatibles/uso terapéutico , Cisplatino/farmacología , Creatinina , Fibroínas/química , Flavanonas , Humanos , Riñón/metabolismo , Nanofibras/química , Nucleotidiltransferasas/farmacología , Nucleotidiltransferasas/uso terapéutico , Péptidos/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa , Tolnaftato/efectos adversos , Agua/farmacología
17.
Mar Drugs ; 20(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35621985

RESUMEN

With the increasingly serious antimicrobial resistance, discovering novel antibiotics has grown impendency. The Antarctic abundant microbial resources, especially fungi, can produce unique bioactive compounds for adapting to the hostile environment. In this study, three Antarctic fungi, Chrysosporium sp. HSXSD-11-1, Cladosporium sp. HSXSD-12 and Acrostalagmus luteoalbus CH-6, were found to have the potential to produce antimicrobial compounds. Furthermore, the crude extracts of CH-6 displayed the strongest antimicrobial activities with 72.3-84.8% growth inhibition against C. albicans and Aeromonas salmonicida. The secondary metabolites of CH-6 were researched by bioactivity tracking combined with molecular networking and led to the isolation of two new α-pyrones, acrostalapyrones A (1) and B (2), along with one known analog (3), and three known indole diketopiperazines (4-6). The absolute configurations of 1 and 2 were identified through modified Mosher's method. Compounds 4 and 6 showed strong antimicrobial activities. Remarkably, the antibacterial activity of 6 against A. salmonicida displayed two times higher than that of the positive drug Ciprofloxacin. This is the first report to discover α-pyrones from the genus Acrostalagmus, and the significant antimicrobial activities of 4 and 6 against C. albicans and A. salmonicida. This study further demonstrates the great potential of Antarctic fungi in the development of new compounds and antibiotics.


Asunto(s)
Ascomicetos , Pironas , Regiones Antárticas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Ascomicetos/metabolismo
18.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408869

RESUMEN

Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene, which is involved in the RAS/MAPK cell signaling transduction process. SHP2 has been shown to contribute to the progression of various cancers and is emerging as an important target for anti-tumor drug research. However, past efforts to develop SHP2 inhibitors into drugs have been unsuccessful owing to the positively charged nature of the active site pocket tending to bind negatively charged groups that are usually non-drug-like. Here, a series of uncharged pyrazoline derivatives were designed and developed as new SHP2 inhibitors using a structure-based strategy. Compound 4o, which exhibited the strongest SHP2 inhibitory activity, bound directly to the catalytic domain of SHP2 in a competitive manner through multiple hydrogen bonds. Compound 4o affected the RAS/MAPK signaling pathway by inhibiting SHP2, and subsequently induced apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. Notably, the oral administration of compound 4o in large doses showed no obvious toxicity. In summary, our findings provide a basis for the further development of compound 4o as a safe, effective and anti-tumor SHP2 inhibitor.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Células HCT116 , Humanos , Neoplasias/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal
19.
Biomed Pharmacother ; 147: 112615, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026488

RESUMEN

Sepsis-induced acute kidney injury (AKI) and acute lung injury (ALI) have high morbidity and mortality, with no effective clinically available drugs. Anti-inflammation is effective strategy in the therapy of AKI and ALI. NF-κB is a target for the development of anti­inflammatory agents. The purpose of the study is to evaluate the effect of 270, self-developed NF-κB inhibitor, in LPS-induced AKI and ALI. LPS-induced macrophages were used to examine the anti-inflammation activity of 270 in vitro. Sepsis-induced AKI and ALI mice models were established by intraperitoneal injection of LPS (10 mg/kg) for 24 h. Oral administration 270 for 14 days before LPS stimulation. Plasma, kidney and lung tissues were collected and used for histopathology, biochemical assay, ELISA, RT-PCR, and western blot analyses. In vitro, we showed that 270 suppressed the inflammation response in LPS-induced RAW 264.7 macrophages and bone marrow derived macrophages. In vivo, we found that 270 ameliorated LPS-induced AKI and ALI, as evidenced by improving various pathological changes, reducing the expression of pro-inflammation genes, blocking the activation of NF-κB and JNK pathways, attenuating the elevated myeloperoxidase (MPO) activity and malondialdehyde (MDA) content, ameliorating the activated ER stress, reversing the inhibition effect on autophagy in kidney and lung tissues, and alleviating the enhanced plasma level of creatinine (Crea), blood urea nitrogen (BUN) and pro-inflammation cytokines. Our investigations provides evidence that NF-κB inhibitor 270 is a potential drug that against LPS-induced AKI and ALI in the future.


Asunto(s)
Lesión Renal Aguda/prevención & control , Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7/efectos de los fármacos
20.
Org Lett ; 23(17): 6612-6616, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34387992

RESUMEN

A nickel-catalyzed cross-coupling of allylic alkyl ethers with organoboron compounds through the cleavage of the inert C(sp3)-O(alkyl) bonds is described. Several types of allylic alkyl ethers can be coupled with various boronic acids or their derivatives to give the corresponding products in good to excellent yields with wide functional group tolerance and excellent regioselectivity. The gram-scale reaction and late-stage modification of biologically active compounds further prove the practicality of this synthetic method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA