Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711280

RESUMEN

Gastrodin, an anti-inflammatory herbal agent, is known to suppress microglia activation. Here, we investigated whether it would exert a similar effect in reactive astrocytes and whether it might act through the renin-angiotensin system (RAS) and sirtuin 3 (SIRT3). Angiotensinogen (ATO), angiotensin-converting enzyme (ACE), angiotensin II type 1 (AT1) and type 2 (AT2) receptor and SIRT3 expression was detected in TNC-1 astrocytes treated with BV-2 microglia conditioned medium (CM) with or without gastrodin and lipopolysaccharide (LPS) pre-treatment by RT-PCR, immunofluorescence and western blotting analysis. Expression of C3 (A1 astrocyte marker), S100A10 (A2 astrocyte marker), proinflammatory cytokines and neurotrophic factors was then evaluated. The results showed a significant increase of ATO, ACE, AT1, SIRT3, C3, proinflammatory cytokines and neurotrophic factors expression in TNC-1 astrocytes incubated in CM + LPS when compared with cells incubated in the CM, but AT2 and S100A10 expression was reduced. TNC-1 astrocytes responded vigorously to BV-2 CM treated with gastrodin + LPS as compared with the control. This was evident by the decreased expression of the abovementioned protein markers, except for AT2 and S100A10. Interestingly, SIRT3, IGF-1 and BDNF expression was enhanced, suggesting that gastrodin inhibited the expression of RAS and proinflammatory mediators but promoted the expression of neurotrophic factors. And gastrodin regulated the phenotypic changes of astrocytes through AT1. Additionally, azilsartan (a specific inhibitor of AT1) inhibited the expression of C3 and S100A10, which remained unaffected in gastrodin and azilsartan combination treatment. These findings provide evidence that gastrodin may have a therapeutic effect via regulating RAS-SIRT3.

2.
Mol Neurobiol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930585

RESUMEN

Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA