Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Mol Cell Biochem ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985252

RESUMEN

Cardiovascular disease (CVD) stands as a predominant global cause of morbidity and mortality, necessitating effective and cost-efficient therapies for cardiovascular risk reduction. Mitochondrial coupling factor 6 (CF6), identified as a novel proatherogenic peptide, emerges as a significant risk factor in endothelial dysfunction development, correlating with CVD severity. CF6 expression can be heightened by CVD risk factors like mechanical force, hypoxia, or high glucose stimuli through the NF-κB pathway. Many studies have explored the CF6-CVD relationship, revealing elevated plasma CF6 levels in essential hypertension, atherosclerotic cardiovascular disease (ASCVD), stroke, and preeclampsia patients. CF6 acts as a vasoactive and proatherogenic peptide in CVD, inducing intracellular acidosis in vascular endothelial cells, inhibiting nitric oxide (NO) and prostacyclin generation, increasing blood pressure, and producing proatherogenic molecules, significantly contributing to CVD development. CF6 induces an imbalance in endothelium-dependent factors, including NO, prostacyclin, and asymmetric dimethylarginine (ADMA), promoting vasoconstriction, vascular remodeling, thrombosis, and insulin resistance, possibly via C-src Ca2+ and PRMT-1/DDAH-2-ADMA-NO pathways. This review offers a comprehensive exploration of CF6 in the context of CVD, providing mechanistic insights into its role in processes impacting CVD, with a focus on CF6 functions, intracellular signaling, and regulatory mechanisms in vascular endothelial cells.

2.
Biomed Pharmacother ; 178: 117156, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032286

RESUMEN

Gut microbiota acts as a critical regulator in the development of nonalcoholic fatty liver disease (NAFLD), making probiotics a promise therapeutic strategy. Studies are needed to identify beneficial Bacteroides strains against NAFLD. Bacteroides ovatus (B. ovatus) may also exhibit therapy effect on NAFLD. The aim of this work was to evaluate the effect of B. ovatus on NAFLD and examine the mechanism. C57BL/6 J male mice were randomly divided into three groups: a control group (NCD) that received control standard diet, a model group (M) with high-fat and high-cholesterol (HFHC) diet, and M_Bo group that was fed HFFC supplemented with B. ovatus. Treatment with B. ovatus could reduce body weight, prevent hepatic steatohepatitis and liver injury. Mechanistically, B. ovatus induced changes of gut microbial diversity and composition, characterized by a decreased Firmicutes/Bacteroidetes (F/B) ratio in M_Bo group mice, a lower abundance of Proteobacteria, Verrucomicrobiota at phylum level and Ruminococcus_torques_group, Ruminococcus_gauvreauii_group, Erysipelatoclostridium at genus level, simultaneously a remarkablely higher fecal abundance of Lachnospiraceae_NK4A136_group, norank_f__Oscillospiraceae, Colidextribacter. Compared with M group, mice treated with B. ovatus showed an markedly altered fecal short chain fatty acids (SCFAs), a decline in serum levels of lipopolysaccharide (LPS), CD163, IL-1ß, TNF-α, reduced macrophages in livers. Additionally, B. ovatus treatment caused downregulation of genes involved in denovo lipogenesis (such as Srebfl, Acaca, Scd1, Fasn), which was accompanied by the upregulation of genes related with fatty acid oxidation (such as Ppara). In conclusion, this study provides evidence that B. ovatus could ameliorate NAFLD by modulating the gut-liver axis.

3.
Heliyon ; 10(13): e33670, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040381

RESUMEN

Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.

4.
J Med Chem ; 67(13): 10589-10600, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38889052

RESUMEN

The immune checkpoint blockade represents a pivotal strategy for tumor immunotherapy. At present, various programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) monoclonal antibodies have been successfully applied to tumor treatment. Additionally, numerous small molecule inhibitors of the PD-1/PD-L1 interaction have also been developed, with some advancing into clinical trials. Here, a novel PD-L1 proteolysis-targeting chimera (PROTAC) library was designed and synthesized utilizing the PD-L1 inhibitor BMS202 and the E3 ligand PG as foundational components. Among these, we identified a highly potent molecule PA8 for PD-L1 degradation in 4T1 cells (DC50 = 0.609 µM). Significantly, compound PA8 potentially inhibits 4T1 cell growth both in vitro and in vivo. Further mechanistic studies revealed that PA8 effectively promoted the immune activation of model mice. Thus, these results suggest that PA8 could be a novel strategy for cancer immunotherapy in the 4T1 tumor model. Although PA8 exhibits weaker degradation activity in some human cancer cells, it still provides a certain basis for further research on PD-L1 PROTAC.


Asunto(s)
Antineoplásicos , Antígeno B7-H1 , Neoplasias de la Mama , Proteolisis , Proteolisis/efectos de los fármacos , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Humanos , Ratones , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/síntesis química , Acetamidas , Piridinas
5.
Bioorg Chem ; 149: 107507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850778

RESUMEN

Opioids are currently the most effective and widely used painkillers in the world. Unfortunately, the clinical use of opioid analgesics is limited by serious adverse effects. Many researchers have been working on designing and optimizing structures in search of novel µ opioid receptor(MOR) agonists with improved analgesic activity and reduced incidence of adverse effects. There are many strategies to develop MOR drugs, mainly focusing on new low efficacy agonists (potentially G protein biased agonists), MOR agonists acting on different Gα subtype, targeting opioid receptors in the periphery, acting on multiple opioid receptor, and targeting allosteric sites of opioid receptors, and others. This review summarizes the design methods, clinical applications, and structure-activity relationships of small-molecule agonists for MOR based on these different design strategies, providing ideas for the development of safer novel opioid ligands with therapeutic potential.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Humanos , Relación Estructura-Actividad , Analgésicos Opioides/farmacología , Analgésicos Opioides/química , Animales , Estructura Molecular
7.
Pharmacol Res ; 206: 107286, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936522

RESUMEN

The Frizzleds (FZDs) receptors on the cell surface belong to the class F of G protein-coupled receptors (GPCRs) which are the major receptors of WNT protein that mediates the classical WNT signaling pathway and other non-classical pathways. Besides, the FZDs also play a core role in tissue regeneration and tumor occurrence. With the structure and mechanism of FZDs activation becoming clearer, a series of FZDs modulators (inhibitors and agonists) have been developed, with the hope of bringing benefits to the treatment of cancer and degenerative diseases. Most of the FZDs inhibitors (small molecules, antibodies or designed protein inhibitors) block WNT signaling through binding to the cysteine-rich domain (CRD) of FZDs. Several small molecules impede FZDs activation by targeting to the third intracellular domain or the transmembrane domain of FZDs. However, three small molecules (FZM1.8, SAG1.3 and purmorphamine) activate the FZDs through direct interaction with the transmembrane domain. Another type of FZDs agonists are bivalent or tetravalent antibodies which activate the WNT signaling via inducing FZD-LRP5/6 heterodimerization. In this article, we reviewed the FZDs modulators reported in recent years, summarized the critical molecules' discovery processes and the elucidated relevant structural and pharmacological mechanisms. We believe the summaried molecular mechanisms of the relevant modulators could provide important guidance and reference for the future development of FZD modulators.


Asunto(s)
Receptores Frizzled , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/antagonistas & inhibidores , Animales , Vía de Señalización Wnt/efectos de los fármacos , Desarrollo de Medicamentos
9.
Eur J Med Chem ; 272: 116471, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704945

RESUMEN

Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.


Asunto(s)
Compuestos de Bifenilo , Lignanos , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Humanos , Relación Estructura-Actividad , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Compuestos Alílicos , Fenoles
10.
Bioorg Chem ; 146: 107278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484586

RESUMEN

VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Renales , Neoplasias Pulmonares , Humanos , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química
11.
J Med Chem ; 67(5): 3244-3273, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38421819

RESUMEN

Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.


Asunto(s)
Antineoplásicos Fitogénicos , Camptotecina , Camptotecina/farmacología , Camptotecina/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/química , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , ADN-Topoisomerasas de Tipo I/metabolismo
12.
Cancer Cell Int ; 24(1): 69, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341584

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS: CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS: AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION: Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.

13.
Med Res Rev ; 44(4): 1404-1445, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38279990

RESUMEN

Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.


Asunto(s)
Enfermedades Neurodegenerativas , Inhibidores de Fosfodiesterasa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Animales , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Int J Biol Macromol ; 254(Pt 1): 127643, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898246

RESUMEN

Bletilla striata has been used for thousands of years and shows the functions of stopping bleeding, reducing swelling, and promoting healing in traditional applications. For Bletilla striata, Bletilla striata polysaccharides (BSP) is the main active ingredient, exhibiting biological functions of anti-inflammatory, anti-oxidant, anti-fibrotic, immune modulation, anti-glycation, and so on. In addition, BSP has exhibited the characteristics of excipient such as bio-adhesion, bio-degradability, and bio-safety and has been prepared into a series of preparations such as nanoparticles, microspheres, microneedles, hydrogels, etc. BSP, as both a drug and an excipient, has already aroused more and more attention. In this review, publications in recent years related to the extraction and identification, biological activities, and excipient application of BSP are reviewed. Specifically, we focused on the advances in the application of BSP as a formulation excipient. We hold opinion that BSP not only needed more researches in the mechanisms, but also the development into hydrogels, nano-formulations, tissue engineering, and so on. And we believe that this paper provides a beneficial reference for further BSP innovation and in-depth research and promotes the use of these natural products in pharmaceutical applications.


Asunto(s)
Excipientes , Orchidaceae , Polisacáridos/farmacología , Cicatrización de Heridas , Hidrogeles/farmacología
15.
Bioorg Chem ; 143: 106999, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38035515

RESUMEN

Renal fibrosis is the pathological change process of chronic kidney disease deteriorating continuously. When the renal organ is stimulated by external stimuli, it will trigger the damage and phenotypic changes of some intrinsic cells in the kidney. When the body's autoimmune regulation or external treatment is not prompted enough to restore the organ, the pathological process is gradually aggravating, inducing a large amount of intracellular collagen deposition, which leads to the appearance of fibrosis and scarring. The renal parenchyma (including glomeruli and tubules) begins to harden, making it difficult to repair the kidney lesions. In the process of gradual changes in the kidney tissue, the kidney units are severely damaged and the kidney function shows a progressive decline, eventually resulting in the clinical manifestation of end-stage renal failure, namely uremia. This review provides a brief description of the diagnosis, pathogenesis, and potential therapeutic inhibitors of renal fibrosis. Since renal fibrosis has not yet had a clear therapeutic target and related drugs, some potential targets and relevant inhibitors are discussed, especially pharmacological effects and interactions with targets. Some existing natural products have potential efficacy for renal fibrosis, which is also roughly summarized, hoping that this article would have reference significance for the treatment of renal fibrosis.


Asunto(s)
Productos Biológicos , Enfermedades Renales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Riñón , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Fibrosis
16.
Acta Pharmacol Sin ; 45(1): 209-222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749236

RESUMEN

Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 µM. Furthermore, we found that S670 (6 µM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Autofagosomas/metabolismo , Amidas/farmacología , Transducción de Señal , Lisosomas/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Qa-SNARE
17.
PLoS One ; 18(12): e0295949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38109411

RESUMEN

The traditional quality gain-loss function(QGLF) considers the case that the primary term loss cannot be ignored, does not consider the cubic term loss, but in practice the cubic term loss should not be ignored. In this paper, based on the existing QGLF model, the Taylor expansion is reserved to the third order, the determination of the quality loss coefficient is discussed and analyzed under the condition that the compensation quantity is constant, and the asymmetric cubic QGLF model is established, and uses an example of concrete mixture out of the machine slump during the dam concrete construction to analyze and discuss the relationship between the proposed model and the traditional quadratic QGLF, which verifies the rationality of the proposed model.

18.
Front Immunol ; 14: 1267091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859999

RESUMEN

Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Humanos , Inflamación , Mediadores de Inflamación , Autoantígenos
19.
Eur J Med Chem ; 262: 115875, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37879169

RESUMEN

Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Agentes Inmunomoduladores
20.
Bioorg Chem ; 141: 106869, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797454

RESUMEN

The opioids have been used for more than a thousand years and are not only the most widely prescribed drugs for moderate to severe pain and acute pain, but also the preferred drugs. However, their non-analgesic effects, especially respiratory depression and potential addiction, are important factors that plague the safety of clinical use and are an urgent problem for pharmacological researchers to address. Current research on analgesic drugs has evolved into different directions: de-opioidization; application of pharmacogenomics to individualize the use of opioids; development of new opioids with less adverse effects. The development of new opioid drugs remains a hot research topic, and with the in-depth study of opioid receptors and intracellular signal transduction mechanisms, new research ideas have been provided for the development of new opioid analgesics with less side effects and stronger analgesic effects. The development of novel opioid drugs in turn includes selective opioid receptor ligands, biased opioid receptor ligands, and multi-target opioid receptor ligands and positive allosteric modulators (PAMs) or antagonists and the single compound as multi-targeted agnoists/antagonists for different receptors. PAMs strategies are also getting newer and are the current research hotspots, including the BMS series of compounds and others, which are extensive and beyond the scope of this review. This review mainly focuses on the selective/biased/multi-targeted MOR/DOR/KOR (mu opioid receptor/delta opioid receptor/kappa opioid receptor) small molecule ligands and involves some cryo-electron microscopy (cryoEM) and structure-based approaches as well as the single compound as multi-targeted agnoists/antagonists for different receptors from 2019 to 2022, including discovery history, activities in vitro and vivo, and clinical studies, in an attempt to provide ideas for the development of novel opioid analgesics with fewer side effects.


Asunto(s)
Analgésicos Opioides , Receptores Opioides kappa , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Receptores Opioides mu , Microscopía por Crioelectrón , Analgésicos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA