RESUMEN
BACKGROUND: Pancreatic cancer (PAC) is one of the most malignant cancer types and immunotherapy has emerged as a promising treatment option. PAC cells undergo metabolic reprogramming, which is thought to modulate the tumor microenvironment (TME) and affect immunotherapy outcomes. However, the metabolic landscape of PAC and its association with the TME remains largely unexplored. METHODS: We characterized the metabolic landscape of PAC based on 112 metabolic pathways and constructed a novel metabolism-related signature (MBS) using data from 1,188 patients with PAC. We evaluated the predictive performance of MBS for immunotherapy outcomes in 11 immunotherapy cohorts from both bulk-RNA and single-cell perspectives. We validated our results using immunohistochemistry, western blotting, colony-formation assays, and an in-house cohort. RESULTS: MBS was found to be negatively associated with antitumor immunity, while positively correlated with cancer stemness, intratumoral heterogeneity, and immune resistant pathways. Notably, MBS outperformed other acknowledged signatures for predicting immunotherapy response in multiple immunotherapy cohorts. Additionally, MBS was a powerful and robust biomarker for predicting prognosis compared with 66 published signatures. Further, we identified dasatinib and epothilone B as potential therapeutic options for MBS-high patients, which were validated through experiments. CONCLUSIONS: Our study provides insights into the mechanisms of immunotherapy resistance in PAC and introduces MBS as a robust metabolism-based indicator for predicting response to immunotherapy and prognosis in patients with PAC. These findings have significant implications for the development of personalized treatment strategies in patients with PAC and highlight the importance of considering metabolic pathways and immune infiltration in TME regulation.
Asunto(s)
Inmunoterapia , Neoplasias Pancreáticas , Humanos , Consenso , Neoplasias Pancreáticas/terapia , Aprendizaje Automático , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH2, and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Asunto(s)
Poloxámero , Cicatrización de Heridas , Polietilenos/farmacología , Hidrogeles/farmacologíaRESUMEN
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in a variety of malignant tumors and functions as an oncogene; however, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the function and regulatory mechanisms of NUCKS1 and potential therapeutic agents targeting NUCKS1 in CRC. We knocked down and overexpressed NUCKS1 in CRC cells and explored its effects in vitro and in vivo. Flow cytometry, CCK-8, Western blotting, colony formation, immunohistochemistry, in vivo tumorigenic, and transmission electron microscopy analyses were performed to determine the effects of NUCKS1 on CRC cell function. LY294002 was used to examine the mechanism of NUCKS1 expression in CRC cells. Potential therapeutic agents for NUCKS1-high CRC patients were analyzed using the CTRP and PRISM datasets, and the function of selected agents was determined by CCK-8 and Western blotting. We revealed that NUCKS1 was highly expressed in CRC tissues and clinically correlated with poor prognosis in CRC patients. NUCKS1 knockdown induces cell cycle arrest, inhibits CRC cell proliferation, and promotes apoptosis and autophagy. These results were reversed when NUCKS1 was overexpressed. Mechanistically, NUCKS1 exerts a cancer-promoting function by activating the PI3K/AKT/mTOR signaling pathway. This was reversed when LY294002 was used to inhibit the PI3K/AKT pathway. Furthermore, we determined that mitoxantrone exhibited high drug sensitivity in NUCKS1-overexpressing CRC cells. This work demonstrated NUCKS1 plays a crucial role in CRC progression via the PI3K/AKT/mTOR signaling pathway. Additionally, mitoxantrone may be a potential therapeutic agent for CRC treatment. Therefore, NUCKS1 represents a promising anti-tumor therapeutic target.
Asunto(s)
Neoplasias Colorrectales , Proteínas Nucleares , Fosfatidilinositol 3-Quinasas , Fosfoproteínas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Mitoxantrona , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMEN
AKR7A3 is a member of the aldo-keto reductase (AKR) protein family, whose primary purpose is to reduce aldehydes and ketones to generate primary and secondary alcohols. It has been reported that AKR7A3 is downregulated in pancreatic cancer (PC). However, the mechanism underlying the effects of AKR7A3 in PC remains largely unclarified. Here, we explored the biological function, molecular mechanism and clinical relevance of AKR7A3 in pancreatic ductal adenocarcinoma (PDAC). AKR7A3 expression was downregulated in PDAC compared with adjacent normal tissues, and the lower AKR7A3 expression was related to poor prognosis. In addition, our results demonstrated that AKR7A3 could be a potential diagnostic marker for PDAC, especially in the early stages. Knockdown of AKR7A3 promoted PDAC progression and chemoresistance, while inhibiting autophagy flux. Mechanistically, AKR7A3 affected the metastasis, autophagy, and chemoresistance of PDAC by regulating PHGDH. Overall, the present study suggests that AKR7A3 inhibits PDAC progression by regulating PHGDH-induced autophagy. In addition, AKR7A3 inhibits chemoresistance via regulating PHGDH and may serve as a new therapeutic target for PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pronóstico , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Autofagia/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias PancreáticasRESUMEN
Objective: To explore the expression of the transferrin receptor (TFRC) gene in pancreatic cancer and to analyze the pathogenesis and immunotherapy of TFRC in patients using bioinformatics methods. Methods: We used public data from the cancer genome atlas (TCGA) and gene expression omnibus databases to explore the expression level of the TFRC gene in pancreatic cancer patients. At the same time, we analyzed the correlation between the TFRC gene expression and patient survival, and further analyzed the correlation between TFRC and survival time of patients with different clinicopathological characteristics. Co-expressed genes and pathway enrichment analyses were used to analyze the mechanism of the TFRC in the occurrence and development of pancreatic cancer. Ultimately, we used the R software to examine the relationship between TFRC and immune phenotypes and immune cell infiltration using the TCGA database. Results: The results of the study showed that TFRC is highly expressed in pancreatic cancer tissue. The upregulated expression of TFRC was negatively correlated with the survival in patients with pancreatic cancer. The bioinformatics analysis showed that TFRC plays a role in the occurrence and development of pancreatic cancer mainly through signaling pathways (including cell adhesion molecule binding, condensed chromosomes, chromosome segregation, and cell cycle checkpoints). Finally, TFRC is associated with immune phenotypes and immune cell infiltration, which may influence immunotherapy. Conclusion: TFRC is significantly increased in pancreatic cancer and is associated with a poor prognosis. Moreover, research on TFRC may generate new ideas for the immunotherapy of pancreatic cancer.
RESUMEN
Background: Pancreatic adenocarcinoma (PAAD) is one of the most malignant cancers and has a poor prognosis. As a critical RNA modification, 5-methylcytosine (m5C) has been reported to regulate tumor progression, including PAAD progression. However, a comprehensive analysis of m5C regulators in PAAD is lacking. Methods: In the present study, PAAD datasets were obtained from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and ArrayExpress databases. The expression pattern of m5C regulators were analyzed and patients were divided into different m5C clusters according to consensus clustering based on m5C regulators. Additionally, m5C differentially expressed genes (DEGs) were determined using Limma package. Based on m5C DEGs, patients were divided into m5C gene clusters. Moreover, m5C gene signatures were derived from m5C DEGs and a quantitative indicator, the m5C score, was developed from the m5C gene signatures. Results: Our study showed that m5C regulators were differentially expressed in patients with PAAD. The m5C clusters and gene clusters based on m5C regulators and m5C DEGs were related to immune cell infiltration, immune-related genes and patient survival status, indicating that m5C modification play a central role in regulating PAAD development partly by modulating immune microenvironment. Additionally, a quantitative indicator, the m5C score, was also developed and was related to a series of immune-related indicators. Moreover, the m5C score precisely predicted the immunotherapy response and prognosis of patients with PAAD. Conclusion: In summary, we confirmed that m5C regulators regulate PAAD development by modulating the immune microenvironment. In addition, a quantitative indicator, the m5C score, was developed to predict immunotherapy response and prognosis and assisted in identifying PAAD patients suitable for tailored immunotherapy strategies.
RESUMEN
BACKGROUND: Transmembrane protein 43 (TMEM43), a member of the transmembrane protein subfamily, plays a critical role in the initiation and development of cancers. However, little is known concerning the biological function and molecular mechanisms of TMEM43 in pancreatic cancer. METHODS: In this study, TMEM43 expression levels were analyzed in pancreatic cancer samples compared with control samples. The relationship of TMEM43 expression and disease-free survival (DFS) and overall survival (OS) were assessed in pancreatic cancer patients. In vitro and in vivo assays were performed to explore the function and role of TMEM43 in pancreatic cancer. Coimmunoprecipitation (co-IP) followed by protein mass spectrometry was applied to analyze the molecular mechanisms of TMEM43 in pancreatic cancer. RESULTS: We demonstrated that TMEM43 expression level is elevated in pancreatic cancer samples compared with control group, and is correlated with poor DFS and OS in pancreatic cancer patients. Knockdown of TMEM43 inhibited pancreatic cancer progression in vitro, decreased the percentage of S phase, and inhibited the tumorigenicity of pancreatic cancer in vivo. Moreover, we demonstrated that TMEM43 promoted pancreatic cancer progression by stabilizing PRPF3 and regulating the RAP2B/ERK axis. CONCLUSIONS: The present study suggests that TMEM43 contributes to pancreatic cancer progression through the PRPF3/RAP2B/ERK axis, and might be a novel therapeutic target for pancreatic cancer.
Asunto(s)
Neoplasias Pancreáticas , Línea Celular Tumoral , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismoRESUMEN
Pancreatic cancer (PAAD) is one of the most malignant cancers and immune microenvironment has been proved to be involved in pathogenesis of PAAD. m6A modification, related to the expression of m6A regulators, participates in the development of multiple cancers. However, the correlation between m6A regulators and immune microenvironment was largely unknown in PAAD. And because of the small sample size of pancreatic cancer in the TCGA database, it is not enough to draw a convincing conclusion. In the present study, we downloaded seven pancreatic cancer datasets with survival data and removed batch effects among these datasets to be used as the PAAD cohort to analyze the immune landscape of PAAD and the expression pattern of m6A regulators and divided the integrated dataset into cluster 1 and cluster 2 by consensus clustering for m6A regulators. Lower m6A regulators were found to be related to higher immune cell infiltration and a better survival. Moreover, we identified six m6A regulators and constructed the prognostic signature of m6A regulators. Patients with low-risk score had a higher response to immune checkpoint inhibitor and a longer overall survival. To figure out the underlying mechanism, we analyzed the cancer immunity cycle, most altered genes, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in risk subtypes. In summary, the present study proved m6A regulators modulated the PAAD immune microenvironment. And risk scores served as predictive indicator for immunotherapy and played a prognostic role for PAAD patients. Our study provided novel therapeutic targets to improve immunotherapy efficacy.
Asunto(s)
Adenocarcinoma/inmunología , Adenosina/análogos & derivados , Biomarcadores de Tumor/inmunología , Neoplasias Pancreáticas/inmunología , ARN/inmunología , Microambiente Tumoral/inmunología , Adenocarcinoma/genética , Adenocarcinoma/terapia , Adenosina/inmunología , Adenosina/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Estudios de Cohortes , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inmunoterapia/métodos , Estimación de Kaplan-Meier , Metilación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Pronóstico , ARN/genética , ARN/metabolismo , Transcriptoma/inmunología , Microambiente Tumoral/genéticaRESUMEN
Sequence variability in surface-antigenic sites of pathogenic proteins is an important obstacle in vaccine development. Over 200 distinct genomic sequences have been identified for human papillomavirus (HPV), of which more than 18 are associated with cervical cancer. Here, based on the high structural similarity of L1 surface loops within a group of phylogenetically close HPV types, we design a triple-type chimera of HPV33/58/52 using loop swapping. The chimeric VLPs elicit neutralization titers comparable with a mix of the three wild-type VLPs both in mice and non-human primates. This engineered region of the chimeric protein recapitulates the conformational contours of the antigenic surfaces of the parental-type proteins, offering a basis for this high immunity. Our stratagem is equally successful in developing other triplet-type chimeras (HPV16/35/31, HPV56/66/53, HPV39/68/70, HPV18/45/59), paving the way for the development of an improved HPV prophylactic vaccine against all carcinogenic HPV strains. This technique may also be extrapolated to other microbes.
Asunto(s)
Diseño de Fármacos , Papillomaviridae/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Neoplasias del Cuello Uterino/prevención & control , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Evaluación Preclínica de Medicamentos , Epítopos/genética , Epítopos/inmunología , Femenino , Ingeniería Genética/métodos , Inmunogenicidad Vacunal , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Pruebas de Neutralización , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/inmunología , Papillomaviridae/genética , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/genética , Filogenia , Organismos Libres de Patógenos Específicos , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/virologíaRESUMEN
Persistent, high-risk human papillomavirus (HPV) infection is the primary cause of cervical cancer. Neutralizing antibodies elicited by L1-only virus-like particles (VLPs) can block HPV infection; however, the lack of high-resolution structures has limited our understanding of the mode of virus infection and the requirement for type specificity at the molecular level. Here, we describe two antibodies, A12A3 and 28F10, that specifically bind to and neutralize HPV58 and HPV59, respectively, through two distinct binding stoichiometries. We show that the epitopes of A12A3 are clustered in the DE loops of two adjacent HPV58 L1 monomers, whereas 28F10 recognizes the HPV59 FG loop of a single monomer. Via structure-based mutagenesis and analysis of antibody binding, we further identified the residues HPV58 D154, S168, and N170 and HPV59 M267, Q270, E273, Y276, K278, and R283, which play critical roles in virus infection. By substituting these strategic epitope residues into other HPV genotypes, we could then redirect the type-specific binding of the antibodies to these genotypes, thus highlighting the importance of these specific residues, HPV58 R161, S168, and N308 and HPV59 Q270, E273, and D281. Overall, our findings provide molecular insights into potential structural determinants of HPV required for infectivity and type specificity.IMPORTANCE High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites.