Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Biol Macromol ; 270(Pt 1): 132028, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704066

RESUMEN

Clinical therapy for widespread infections caused by Streptococcus pneumoniae (S. pneumoniae), such as community-acquired pneumonia, is highly challenging. As an important bacterial toxin, hydrogen peroxide (H2O2) secreted by S. pneumoniae can suppress the host's immune system and cause more severe disease. To address this problem, a hyaluronic acid (HA)-coated inorganic catalase-driven Janus nanomotor was developed, which can cleverly utilize and decompose H2O2 to reduce the burden of bacterial infection, and have excellent drug loading capacity. HA coating prevents rapid leakage of loaded antibiotics and improves the biocompatibility of the nanomaterials. The Janus nanomotor converted H2O2 into oxygen (O2), gave itself the capacity to move actively, and encouraged widespread dispersion in the lesion site. Encouragingly, animal experiments demonstrated that the capability of the nanomotors to degrade H2O2 contributes to diminishing the proliferation of S. pneumoniae and lung tissue damage. This self-propelled drug delivery platform provides a new therapeutic strategy for infections with toxin-secreting bacteria.


Asunto(s)
Catalasa , Ácido Hialurónico , Peróxido de Hidrógeno , Streptococcus pneumoniae , Ácido Hialurónico/química , Catalasa/metabolismo , Catalasa/química , Streptococcus pneumoniae/efectos de los fármacos , Animales , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Nanoestructuras/química , Humanos , Neumonía/tratamiento farmacológico
2.
Int J Biol Macromol ; 271(Pt 2): 132536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777021

RESUMEN

The enhancement of antimicrobial wound dressings is of utmost importance in light of the escalating risk of antibiotic resistance caused by excessive antibiotic usage. Conventional antimicrobial materials eradicate pathogenic bacteria while impeding the proliferation of beneficial bacteria during the management of wound infections, thereby disturbing the equilibrium of the skin micro-ecosystem and engendering recurrent cutaneous complications. Lactobacillus rhamnosus (L.rha) is a probiotic that can inhibit the growth of certain pathogenic bacteria by secreting a large number of metabolites. In this paper, we synthesized a cross-linker (SPBA) with a boric acid molecule from succinic acid and 4-(bromomethyl)phenylboronic acid, which formed a boric acid ester bond with a diol on the natural polysaccharide sodium alginate (SA), and obtained a pH/reactive oxygen species (ROS) dual-responsive hydrogel (SA-SPBA) for loading L.rha to treat wound infections. The SA-SPBA@L.rha hydrogel improves the survival of L.rha during storage and has good injectability as well as self-healing properties. The hydrogel showed good biocompatibility, the antimicrobial effect increases in a dose-dependent manner, and it has a certain antioxidant and anti-inflammatory capacity, accelerating wound repair. The use of SA-SPBA@L.rha hydrogel provides a safe and effective strategy for the repair of skin wound infections.


Asunto(s)
Alginatos , Antibacterianos , Hidrogeles , Especies Reactivas de Oxígeno , Infección de Heridas , Alginatos/química , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Concentración de Iones de Hidrógeno , Animales , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Lacticaseibacillus rhamnosus/química , Cicatrización de Heridas/efectos de los fármacos , Humanos , Antioxidantes/farmacología , Antioxidantes/química
3.
Redox Biol ; 73: 103217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820984

RESUMEN

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.


Asunto(s)
Glucosa Oxidasa , Hiperglucemia , Óxido Nítrico , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Animales , Glucosa Oxidasa/metabolismo , Humanos , Ratones , Glucosa/metabolismo , Ratas , Antibacterianos/farmacología , Antibacterianos/química
4.
ACS Appl Mater Interfaces ; 16(15): 18400-18410, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38576193

RESUMEN

Drug-resistant bacterial infection and biofilm formation are the key inhibitors of wound healing, and new strategies are urgently needed to address these issues. In this study, we designed a pH-responsive co-assembled peptide hydrogel to inhibit Methicillin-resistant Staphylococcus aureus (MRSA) infection and promote wound healing. We synthesized a cationic short peptide (Nap-FFKKK) and a co-assembled hydrogel with curcumin at pH ∼ 7.8. The loaded curcumin was continuously released in a weak acid environment (pH ∼ 5.5). The lysine-rich cationic peptide inhibited biofilm formation in MRSA via electrostatic interaction with the negatively charged bacterial cell surface and, thus, provided a reinforcing antibacterial effect with curcumin. In vitro antibacterial experiments showed that the co-assembled system considerably reduced the minimum inhibitory concentration of curcumin against MRSA by 10-fold and promoted wound healing in a mouse model of MRSA-infected wounds. This study provides a simple and promising strategy to treat drug-resistant bacterial infections in wounds.


Asunto(s)
Infecciones Bacterianas , Curcumina , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratones , Hidrogeles , Antibacterianos , Péptidos , Cicatrización de Heridas , Concentración de Iones de Hidrógeno
5.
Antimicrob Agents Chemother ; 68(4): e0126123, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38415983

RESUMEN

Antibiotic resistance represents a significant challenge to public health and human safety. The primary driver behind the dissemination of antibiotic resistance is the horizontal transfer of plasmids. Current conjugative transfer assay is generally performed in a standardized manner, ignoring the effect of the host environment. Host defense peptides (HDPs) possess a wide range of biological targets and play an essential role in the innate immune system. Herein, we reveal that sub-minimum inhibitory concentrations of HDPs facilitate the conjugative transfer of RP4-7 plasmid in the Luria Broth medium, and this observation is reversed in the RPMI medium, designed to simulate the host environment. Out of these HDPs, indolicidin (Ind), a cationic tridecapeptide from bovine neutrophils, significantly inhibits the conjugation of multidrug resistance plasmids in a dose-dependent manner, including blaNDM- and tet(X4)-bearing plasmids. We demonstrate that the addition of Ind to RPMI medium as the incubation substrate downregulates the expression of conjugation-related genes. In addition, Ind weakens the tricarboxylic acid cycle, impedes the electron transport chain, and disrupts the proton motive force, consequently diminishing the synthesis of adenosine triphosphate and limiting the energy supply. Our findings highlight the importance of the host-like environments for the development of horizontal transfer inhibitors and demonstrate the potential of HDPs in preventing the spread of resistance plasmids.


Asunto(s)
Conjugación Genética , Genes Bacterianos , Animales , Bovinos , Humanos , Plásmidos/genética , Farmacorresistencia Microbiana , Transferencia de Gen Horizontal , Péptidos Catiónicos Antimicrobianos/farmacología , Antibacterianos/farmacología
6.
BMC Infect Dis ; 24(1): 206, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360539

RESUMEN

BACKGROUND: Fear of a global public health issue and fresh infection wave in the persistent COVID-19 pandemic has been enflamed by the appearance of the novel variant Omicron BF.7 lineage. Recently, it has been seeing the novel Omicron subtype BF.7 lineage has sprawled exponentially in Hohhot. More than anything, risk stratification is significant to ascertain patients infected with COVID-19 who the most need in-hospital or in-home management. The study intends to understand the clinical severity and epidemiological characteristics of COVID-19 Omicron subvariant BF.7. lineage via gathering and analyzing the cases with Omicron subvariant in Hohhot, Inner Mongolia. METHODS: Based upon this, we linked variant Omicron BF.7 individual-level information including sex, age, symptom, underlying conditions and vaccination record. Further, we divided the cases into various groups and assessed the severity of patients according to the symptoms of patients with COVID-19. Clinical indicators and data might help to predict disadvantage outcomes and progression among Omicron BF.7 patients. RESULTS: In this study, in patients with severe symptoms, some indicators from real world data such as white blood cells, AST, ALT and CRE in patients with Omicron BF.7 in severe symptoms were significantly higher than mild and asymptomatic patients, while some indicators were significantly lower. CONCLUSIONS: Above results suggested that the indicators were associated with ponderance of clinical symptoms. Our survey emphasized the value of timely investigations of clinical data obtained by systemic study to acquire detailed information.


Asunto(s)
COVID-19 , Humanos , Estudios Retrospectivos , COVID-19/epidemiología , Pandemias , China/epidemiología , Salud Pública
7.
ACS Infect Dis ; 10(2): 594-605, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38183662

RESUMEN

The escalating mortality rate resulting from multidrug-resistant (MDR) bacteria has intensified the urgency for innovative antimicrobial agents. Currently, the antimicrobial activity of compounds is usually assessed by testing the minimum inhibitory concentration (MIC) on a standardized laboratory medium. However, such screening conditions differ from the in vivo environment, making it easy to overlook some antibacterial agents that are active in vivo but less active in vitro. Herein, by using tissue medium RPMI, we uncover that anthracyclines, especially mitoxantrone (MX), exhibit improved bacteriostatic and bactericidal effects against various MDR bacteria in host-like media. Transcriptome results reveal that LPS modification-related genes of bacterial membrane surfaces and metabolic genes are significantly down-regulated in RPMI media. Mechanistic studies demonstrate that MX leads to more substantial membrane damage, increased ROS production, and DNA damage in host-mimicking conditions. Furthermore, we demonstrate that MX and colistin exhibit strong synergistic effects against mcr-positive strains in host-mimicking media by disrupting iron homeostasis. In an experimental murine infection model, MX monotreatment demonstrates therapeutic efficacy in reducing bacterial burdens. Overall, our work suggests that mimicking the host condition is an effective strategy to identify new antimicrobial agents and highlights the therapeutic potential of anthracycline drugs in combating MDR pathogens.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Ratones , Antibacterianos/farmacología , Antraciclinas/farmacología , Reposicionamiento de Medicamentos , Antiinfecciosos/farmacología , Colistina/farmacología , Bacterias
8.
Nutrients ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068753

RESUMEN

Multiple studies have indicated that distinct metabolites are involved in the occurrence and development of osteopenia (ON) and osteoporosis (OP); however, these metabolites in OP and ON have not yet been classified and standardized. This systematic review and meta-analysis included 21 articles aiming to investigate the distinct metabolites in patients with ON and OP. The quality of the included articles was generally high; seventeen studies had >7 stars, and the remaining four received 6 stars. This systematic review showed that three metabolites (phosphatidylcholine (PC) (lipid metabolites), galactose (carbohydrate metabolites), and succinic acid (other metabolites)) increased, four (glycylglycine (gly-gly), cystine (amino acids), sphingomyelin (SM) (lipid metabolites) and glucose (carbohydrate metabolites)) decreased, and five (glutamine, hydroxyproline, taurine (amino acids), lysophosphatidylcholine (LPC) (lipid metabolites), and lactate (other metabolites)) had conflicting directions in OP/ON. The results of the meta-analysis show that gly-gly (MD = -0.77, 95%CI -1.43 to -0.11, p = 0.02) and cystine (MD = -5.52, 95%CI -7.35 to -3.68, p < 0.00001) decreased in the OP group compared with the healthy control group. Moreover, LPC (MD = 1.48, 95%CI 0.11 to 2.86, p = 0.03) increased in the OP group compared with the healthy control group. These results indicate that distinct metabolites were associated with ON and OP, which could be considered a predictor for OP.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Cistina , Osteoporosis/epidemiología , Enfermedades Óseas Metabólicas/complicaciones , Aminoácidos , Lisofosfatidilcolinas , Carbohidratos
9.
Nutrients ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836475

RESUMEN

(1) Many studies have attempted to utilize metabolomic approaches to explore potential biomarkers for the early detection of osteoarthritis (OA), but consistent and high-level evidence is still lacking. In this study, we performed a systematic review and meta-analysis of differential small molecule metabolites between OA patients and healthy individuals to screen promising candidates from a large number of samples with the aim of informing future prospective studies. (2) Methods: We searched the EMBASE, the Cochrane Library, PubMed, Web of Science, Wan Fang Data, VIP Date, and CNKI up to 11 August 2022, and selected relevant records based on inclusion criteria. The risk of bias was assessed using the Newcastle-Ottawa quality assessment scale. We performed qualitative synthesis by counting the frequencies of changing directions and conducted meta-analyses using the random effects model and the fixed-effects model to calculate the mean difference and 95% confidence interval. (3) Results: A total of 3798 records were identified and 13 studies with 495 participants were included. In the 13 studies, 132 kinds of small molecule differential metabolites were extracted, 58 increased, 57 decreased and 17 had direction conflicts. Among them, 37 metabolites appeared more than twice. The results of meta-analyses among four studies showed that three metabolites increased, and eight metabolites decreased compared to healthy controls (HC). (4) Conclusions: The main differential metabolites between OA and healthy subjects were amino acids (AAs) and their derivatives, including tryptophan, lysine, leucine, proline, phenylalanine, glutamine, dimethylglycine, citrulline, asparagine, acetylcarnitine and creatinine (muscle metabolic products), which could be potential biomarkers for predicting OA.


Asunto(s)
Osteoartritis , Humanos , Estudios Prospectivos , Osteoartritis/diagnóstico , Osteoartritis/metabolismo , Biomarcadores/metabolismo , Sesgo , Estado de Salud
10.
Commun Biol ; 6(1): 810, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537267

RESUMEN

The increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. Antibiotic adjuvant strategy is a more effective and economical approach to expand the lifespan of currently used antibiotics. Herein, we uncover that alcohol-abuse drug disulfiram (DSF) and derivatives thereof are potent antibiotic adjuvants, which dramatically potentiate the antibacterial activity of carbapenems and colistin against New Delhi metallo-ß-lactamase (NDM)- and mobilized colistin resistance (MCR)-expressing Gram-negative pathogens, respectively. Mechanistic studies indicate that DSF improves meropenem efficacy by specifically inhibiting NDM activity. Moreover, the robust potentiation of DSF to colistin is due to its ability to exacerbate the membrane-damaging effects of colistin and disrupt bacterial metabolism. Notably, the passage and conjugation assays reveal that DSF minimizes the evolution and spread of meropenem and colistin resistance in clinical pathogens. Finally, their synergistic efficacy in animal models was evaluated and DSF-colistin/meropenem combination could effectively treat MDR bacterial infections in vivo. Taken together, our works demonstrate that DSF and its derivatives are versatile and potent colistin and carbapenems adjuvants, opening a new horizon for the treatment of difficult-to-treat infections.


Asunto(s)
Carbapenémicos , Colistina , Animales , Colistina/farmacología , Carbapenémicos/farmacología , Meropenem/farmacología , Disulfiram/farmacología , Antibacterianos/farmacología , Combinación de Medicamentos , Bacterias Gramnegativas
11.
ACS Nano ; 17(16): 15568-15589, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37531599

RESUMEN

Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi4MoO9/two-dimensional (2D) Bi2MoO6, MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Bismuto/farmacología , Bismuto/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/farmacología , Antibacterianos/farmacología , Antibacterianos/química
12.
Adv Sci (Weinh) ; 10(29): e2302182, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37552809

RESUMEN

The emergence and prevalence of mobile colistin resistance gene mcr have dramatically compromised the clinical efficacy of colistin, a cyclopeptide antibiotic considered to be the last option for treating different-to-treat infections. The combination strategy provides a productive and cost-effective strategy to expand the lifespan of existing antibiotics. Structural-activity relationship analysis of polymyxins indicates that the fatty acyl chain plays an indispensable role in their antibacterial activity. Herein, it is revealed that three saturated fatty acids (SFAs), especially sodium caprate (SC), substantially potentiate the antibacterial activity of colistin against mcr-positive bacteria. The combination of SFAs and colistin effectively inhibits biofilm formation and eliminates matured biofilms, and is capable of preventing the emergence and spread of mobile colistin resistance. Mechanistically, the addition of SFAs reduces lipopolysaccharide (LPS) modification by simultaneously promoting LPS biosynthesis and inhibiting the activity of MCR enzyme, enhance bacterial membrane damage, and impair the proton motive force-dependent efflux pump, thereby boosting the action of colistin. In three animal models of infection by mcr-positive pathogens, SC combined with colistin exhibit an excellent therapeutic effect. These findings indicate the therapeutic potential of SFAs as novel antibiotic adjuvants for the treatment of infections caused by multidrug-resistant bacteria in combination with colistin.


Asunto(s)
Colistina , Lipopolisacáridos , Animales , Colistina/farmacología , Lipopolisacáridos/farmacología , Ácidos Grasos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología
13.
Front Microbiol ; 14: 1198784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293226

RESUMEN

DNA ligase is an important enzyme ubiquitous in all three kingdoms of life that can ligate DNA strands, thus playing essential roles in DNA replication, repair and recombination in vivo. In vitro, DNA ligase is also used in biotechnological applications requiring in DNA manipulation, including molecular cloning, mutation detection, DNA assembly, DNA sequencing, and other aspects. Thermophilic and thermostable enzymes from hyperthermophiles that thrive in the high-temperature (above 80°C) environments have provided an important pool of useful enzymes as biotechnological reagents. Similar to other organisms, each hyperthermophile harbors at least one DNA ligase. In this review, we summarize recent progress on structural and biochemical properties of thermostable DNA ligases from hyperthermophiles, focusing on similarities and differences between DNA ligases from hyperthermophilic bacteria and archaea, and between these thermostable DNA ligases and non-thermostable homologs. Additionally, altered thermostable DNA ligases are discussed. Possessing improved fidelity or thermostability compared to the wild-type enzymes, they could be potential DNA ligases for biotechnology in the future. Importantly, we also describe current applications of thermostable DNA ligases from hyperthermophiles in biotechnology.

14.
iScience ; 26(6): 106809, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37235051

RESUMEN

Although meropenem, colistin, and tigecycline are recognized as the last-line antibiotics for multidrug-resistant Gram-negative bacteria (MDR-GN), the emergence of mobile resistance genes such as blaNDM, mcr, and tet(X) severely compromises their clinical effectiveness. Developing novel antibiotic adjuvants to restore the effectiveness of existing antibiotics provides a feasible approach to address this issue. Herein, we discover that a Food and Drug Administration (FDA)-approved drug daunorubicin (DNR) drastically potentiates the activity of last-resort antibiotics against MDR-GN pathogens and biofilm-producing bacteria. Furthermore, DNR effectively inhibits the evolution and spread of colistin and tigecycline resistance. Mechanistically, DNR and colistin combination exacerbates membrane disruption, induces DNA damage and the massive production of reactive oxygen species (ROS), ultimately leading to bacterial cell death. Importantly, DNR restores the effectiveness of colistin in Galleria mellonella and murine models of infection. Collectively, our findings provide a potential drug combination strategy for treating severe infections elicited by Gram-negative superbugs.

15.
Acta Pharm Sin B ; 13(2): 648-661, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873188

RESUMEN

Cholesterol is an important precursor of many endogenous molecules. Disruption of cholesterol homeostasis can cause many pathological changes, leading to liver and cardiovascular diseases. CYP1A is widely involved in cholesterol metabolic network, but its exact function has not been fully elucidated. Here, we aim to explore how CYP1A regulates cholesterol homeostasis. Our data showed that CYP1A1/2 knockout (KO) rats presented cholesterol deposition in blood and liver. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and total cholesterol were significantly increased in KO rats. Further studies found that the lipogenesis pathway (LXRα-SREBP1-SCD1) of KO rats was activated, and the key protein of cholesterol ester hydrolysis (CES1) was inhibited. Importantly, lansoprazole can significantly alleviate rat hepatic lipid deposition in hypercholesterolemia models by inducing CYP1A. Our findings reveal the role of CYP1A as a potential regulator of cholesterol homeostasis and provide a new perspective for the treatment of hypercholesterolemia.

16.
Med Res Rev ; 43(4): 1068-1090, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36896761

RESUMEN

Novel antibacterial therapies are urgently required to tackle the increasing number of multidrug-resistant pathogens. Identification of new antimicrobial targets is critical to avoid possible cross-resistance issues. Bacterial proton motive force (PMF), an energetic pathway located on the bacterial membrane, crucially regulates various biological possesses such as adenosine triphosphate synthesis, active transport of molecules, and rotation of bacterial flagella. Nevertheless, the potential of bacterial PMF as an antibacterial target remains largely unexplored. The PMF generally comprises electric potential (ΔΨ) and transmembrane proton gradient (ΔpH). In this review, we present an overview of bacterial PMF, including its functions and characterizations, highlighting the representative antimicrobial agents that specifically target either ΔΨ or ΔpH. At the same time, we also discuss the adjuvant potential of bacterial PMF-targeting compounds. Lastly, we highlight the value of PMF disruptors in preventing the transmission of antibiotic resistance genes. These findings suggest that bacterial PMF represents an unprecedented target, providing a comprehensive approach to controlling antimicrobial resistance.


Asunto(s)
Antiinfecciosos , Fuerza Protón-Motriz , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
17.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901694

RESUMEN

Estrogen-related receptors (ERRα, ß and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several cell types and they display various functions in normal and pathological contexts. Amongst others, they are notably involved in bone homeostasis, energy metabolism and cancer progression. In contrast to other nuclear receptors, the activities of the ERRs are apparently not controlled by a natural ligand but they rely on other means such as the availability of transcriptional co-regulators. Here we focus on ERRα and review the variety of co-regulators that have been identified by various means for this receptor and their reported target genes. ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes. This exemplifies the combinatorial specificity of transcriptional regulation that induces discrete cellular phenotypes depending on the selected coregulator. We finally propose an integrated view of the ERRα transcriptional network.


Asunto(s)
Redes Reguladoras de Genes , Receptores de Estrógenos , Animales , Regulación de la Expresión Génica , Mamíferos/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo , Humanos , Receptor Relacionado con Estrógeno ERRalfa
18.
Crit Rev Microbiol ; : 1-18, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890767

RESUMEN

The widespread antimicrobial resistance (AMR) calls for the development of new antimicrobial strategies. Antibiotic adjuvant rescues antibiotic activity and increases the life span of the antibiotics, representing a more productive, timely, and cost-effective strategy in fighting drug-resistant pathogens. Antimicrobial peptides (AMPs) from synthetic and natural sources are considered new-generation antibacterial agents. Besides their direct antimicrobial activity, growing evidence shows that some AMPs effectively enhance the activity of conventional antibiotics. The combinations of AMPs and antibiotics display an improved therapeutic effect on antibiotic-resistant bacterial infections and minimize the emergence of resistance. In this review, we discuss the value of AMPs in the age of resistance, including modes of action, limiting evolutionary resistance, and their designing strategies. We summarise the recent advances in combining AMPs and antibiotics against antibiotic-resistant pathogens, as well as their synergistic mechanisms. Lastly, we highlight the challenges and opportunities associated with the use of AMPs as potential antibiotic adjuvants. This will shed new light on the deployment of synergistic combinations to address the AMR crisis.

19.
World J Microbiol Biotechnol ; 39(4): 90, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752840

RESUMEN

Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.


Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina) , Sulfolobus , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo , Reparación del ADN , Daño del ADN , ADN
20.
Adv Sci (Weinh) ; 10(9): e2207170, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36698264

RESUMEN

Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Mononucleótido de Nicotinamida/farmacología , Disbiosis/tratamiento farmacológico , Disbiosis/microbiología , Privación de Sueño/tratamiento farmacológico , Antibacterianos/farmacología , Ácidos y Sales Biliares/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA