Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Phytomedicine ; 133: 155905, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128301

RESUMEN

BACKGROUND: Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. PURPOSE: This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. MATERIALS AND METHODS: HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. RESULTS: First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. CONCLUSION: Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Farmacología en Red , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Animales , Células Hep G2 , Línea Celular Tumoral , Ratas , Análisis de Secuencia de ARN , Antineoplásicos Fitogénicos/farmacología , Espectrometría de Masas en Tándem , Simulación por Computador , Masculino , Ratas Sprague-Dawley , Cromatografía Liquida/métodos
2.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744822

RESUMEN

Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.


Asunto(s)
Eucommiaceae , Hipertensión , Enfermedades Neurodegenerativas , China , Suplementos Dietéticos , Eucommiaceae/química , Humanos
3.
ACS Appl Mater Interfaces ; 14(2): 2650-2662, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34995459

RESUMEN

Smart nanotheranostic systems (SNSs) have attracted extensive attention in antitumor therapy. Nevertheless, constructing SNSs with disease diagnosis ability, improved drug delivery efficiency, inherent imaging performance, and high treatment efficiency remains a scientific challenge. Herein, ultrasmall tin dioxide (SnO2) was assembled with upconversion nanoparticles (UCNPs) to form mesoporous nanocapsules by an in situ hydrothermal deposition method, followed by loading with doxorubicin (DOX) and modification with bovine serum albumin (BSA). pH/near-infrared dual-responsive nanotheranostics was constructed for computed tomography (CT) and magnetic resonance (MR) imaging-induced collaborative cancer treatment. The mesoporous channel of SnO2 was utilized as a reservoir to encapsulate DOX, an antineoplastic drug, for chemotherapy and as a semiconductor photosensitizer for photodynamic therapy (PDT). Furthermore, the DOX-loaded UCNPs@SnO2-BSA nanocapsules combined PDT, Nd3+-doped UCNP-triggered hyperthermia effect, and DOX-triggered chemotherapy simultaneously and demonstrated prominently enhanced treatment efficiency compared to the monotherapy model. Moreover, tin, as one of the trace elements in the human body, has a similar X-ray attenuation coefficient to iodine and therefore can act as a contrast agent for CT imaging to monitor the treatment process. Such an orchestrated synergistic anticancer treatment exhibited apparent inhibition of tumor growth in tumor-bearing mice with negligible side effects. Our study demonstrates nanocapsules with excellent biocompatibility and great potential for cancer treatment.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Doxorrubicina/farmacología , Nanocápsulas/química , Fármacos Fotosensibilizantes/farmacología , Nanomedicina Teranóstica , Compuestos de Estaño/farmacología , Animales , Antibióticos Antineoplásicos/química , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Ensayo de Materiales , Ratones , Ratones Endogámicos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Porosidad , Albúmina Sérica Bovina/química , Propiedades de Superficie , Compuestos de Estaño/química
4.
ACS Nano ; 14(8): 9613-9625, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32806021

RESUMEN

Reactive oxygen species (ROS)-based therapeutic modalities including chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold great promise for conquering malignant tumors. However, these two methods tend to be restricted by the overexpressed glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Here, we develop biodegradable copper/manganese silicate nanosphere (CMSN)-coated lanthanide-doped nanoparticles (LDNPs) for trimodal imaging-guided CDT/PDT synergistic therapy. The tridoped Yb3+/Er3+/Tm3+ in the ultrasmall core and the optimal Yb3+/Ce3+ doping in the shell enable the ultrabright dual-mode upconversion (UC) and downconversion (DC) emissions of LDNPs under near-infrared (NIR) laser excitation. The luminescence in the second near-infrared (NIR-II, 1000-1700 nm) window offers deep-tissue penetration, high spatial resolution, and reduced autofluorescence when used for optical imaging. Significantly, the CMSNs are capable of relieving the hypoxic TME through decomposing H2O2 to produce O2, which can react with the sample to generate 1O2 upon excitation of UC photons (PDT). The GSH-triggered degradation of CMSNs results in the release of Fenton-like Mn2+ and Cu+ ions for •OH generation (CDT); simultaneously, the released Mn2+ ions couple with NIR-II luminescence imaging, computed tomography (CT) imaging, and magnetic resonance (MR) imaging of LDNPs, performing a TME-amplified trimodal effect. In such a nanomedicine, the TME modulation, bimetallic silicate photosensitizer, Fenton-like nanocatalyst, and NIR-II/MR/CT contrast agent were achieved "one for all", thereby realizing highly efficient tumor theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrógeno , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Nanomedicina Teranóstica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA