Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant Cell ; 36(6): 2238-2252, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38367203

RESUMEN

During base excision repair (BER), the apurinic or apyrimidinic (AP) site serves as an intermediate product following base excision. In plants, APE-redox protein (ARP) represents the major AP site of cleavage activity. Despite the well-established understanding that the nucleosomal structure acts as a barrier to various DNA-templated processes, the regulatory mechanisms underlying BER at the chromatin level remain elusive, especially in plants. In this study, we identified plant chromatin remodeler Excision Repair Cross-Complementing protein group 6 (ERCC6) and histone chaperone Nucleosome Assembly Protein 1 (NAP1) as interacting proteins with ARP. The catalytic ATPase domain of ERCC6 facilitates its interaction with both ARP and NAP1. Additionally, ERCC6 and NAP1 synergistically contribute to nucleosome sliding and exposure of hindered endonuclease cleavage sites. Loss-of-function mutations in Arabidopsis (Arabidopsis thaliana) ERCC6 or NAP1 resulted in arp-dependent plant hypersensitivity to 5-fluorouracil, a toxic agent inducing BER, and the accumulation of AP sites. Furthermore, similar protein interactions are also found in yeast cells, suggesting a conserved recruitment mechanism employed by the AP endonuclease to overcome chromatin barriers during BER progression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ensamble y Desensamble de Cromatina , Reparación del ADN , Proteína 1 de Ensamblaje de Nucleosomas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reparación del ADN/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/genética , Nucleosomas/metabolismo
2.
Front Microbiol ; 13: 865829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495719

RESUMEN

Scaffold protein Ste5 and associated kinases, including Ste11, Ste7, and Fus3, are core components of the mating pheromone pathway, which is required to induce a mating response. Orthologs of these proteins are widely present in fungi, but to which extent one protein can be replaced by its ortholog is less well understood. Here, interspecies complementation was carried out to evaluate the functional homology of Ste5 and associated kinases in Kluyveromyces lactis, K. marxianus, and Saccharomyces cerevisiae. These three species occupy important positions in the evolution of hemiascomycetes. Results indicated that Ste5 and associated kinases in K. lactis and K. marxianus could be functionally replaced by their orthologs to different extents. However, the extent of sequence identity, either between full-length proteins or between domains, did not necessarily indicate the extent of functional replaceability. For example, Ste5, the most unconserved protein in sequence, achieved the highest average functional replaceability. Notably, swapping Ste5 between K. lactis and K. marxianus significantly promoted mating in both species and the weakened interaction between the Ste5 and Ste7 might contribute to this phenotype. Consistently, chimeric Ste5 displaying a higher affinity for Ste7 decreased the mating efficiency, while chimeric Ste5 displaying a lower affinity for Ste7 improved the mating efficiency. Furthermore, the length of a negatively charged segment in the Ste7-binding domain of Ste5 was negatively correlated with the mating efficiency in K. lactis and K. marxianus. Extending the length of the segment in KlSte5 improved its interaction with Ste7 and that might contribute to the reduced mating efficiency. Our study suggested a novel role of Ste5-Ste7 interaction in the negative regulation of the pheromone pathway. Meanwhile, Ste5 mutants displaying improved mating efficiency facilitated the breeding and selection of Kluyveromyces strains for industrial applications.

3.
Biotechnol Biofuels ; 14(1): 236, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906221

RESUMEN

BACKGROUND: Kluyveromyces marxianus is a promising cell factory for producing bioethanol and that raised a demand for a high yield of heterologous proteins in this species. Expressions of heterologous proteins usually lead to the accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER) and then cause ER stress. To cope with this problem, a group of ER stress response target genes (ESRTs) are induced, mainly through a signaling network called unfolded protein response (UPR). Characterization and modulation of ESRTs direct the optimization of heterologous expressions. However, ESRTs in K. marxianus have not been identified so far. RESULTS: In this study, we characterized the ER stress response in K. marxianus for the first time, by using two ER stress-inducing reagents, dithiothreitol (DTT) and tunicamycin (TM). Results showed that the Kar2-Ire1-Hac1 pathway of UPR is well conserved in K. marxianus. About 15% and 6% of genes were upregulated during treatment of DTT and TM, respectively. A total of 115 upregulated genes were characterized as ESRTs, among which 97 genes were identified as UPR target genes and 37 UPR target genes contained UPR elements in their promoters. Genes related to carbohydrate metabolic process and actin filament organization were identified as new types of UPR target genes. A total of 102 ESRTs were overexpressed separately in plasmids and their effects on productions of two different lignocellulolytic enzymes were systematically evaluated. Overexpressing genes involved in carbohydrate metabolism, including PDC1, PGK and VID28, overexpressing a chaperone gene CAJ1 or overexpressing a reductase gene MET13 substantially improved secretion expressions of heterologous proteins. Meanwhile, overexpressing a novel gene, KLMA_50479 (named ESR1), as well as overexpressing genes involved in ER-associated protein degradation (ERAD), including HRD3, USA1 andYET3, reduced the secretory expressions. ESR1 and the aforementioned ERAD genes were deleted from the genome. Resultant mutants, except the yet3Δ mutant, substantially improved secretions of three different heterologous proteins. During the fed-batch fermentation, extracellular activities of an endoxylanase and a glucanase in hrd3Δ cells improved by 43% and 28%, respectively, compared to those in wild-type cells. CONCLUSIONS: Our results unveil the transcriptional scope of the ER stress response in K. marxianus and suggest efficient ways to improve productions of heterologous proteins by manipulating expressions of ESRTs.

4.
Front Bioeng Biotechnol ; 9: 799756, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087802

RESUMEN

Kluyveromyces marxianus is the fastest-growing eukaryote and a promising host for producing bioethanol and heterologous proteins. To perform a laboratory evolution of thermal tolerance in K. marxianus, diploid, triploid and tetraploid strains were constructed, respectively. Considering the genetic diversity caused by genetic recombination in meiosis, we established an iterative cycle of "diploid/polyploid - meiosis - selection of spores at high temperature" to screen thermotolerant strains. Results showed that the evolution of thermal tolerance in diploid strain was more efficient than that in triploid and tetraploid strains. The thermal tolerance of the progenies of diploid and triploid strains after a two-round screen was significantly improved than that after a one-round screen, while the thermal tolerance of the progenies after the one-round screen was better than that of the initial strain. After a two-round screen, the maximum tolerable temperature of Dip2-8, a progeny of diploid strain, was 3°C higher than that of the original strain. Whole-genome sequencing revealed nonsense mutations of PSR1 and PDE2 in the thermotolerant progenies. Deletion of either PSR1 or PDE2 in the original strain improved thermotolerance and two deletions displayed additive effects, suggesting PSR1 and PDE2 negatively regulated the thermotolerance of K. marxianus in parallel pathways. Therefore, the iterative cycle of "meiosis - spore screening" developed in this study provides an efficient way to perform the laboratory evolution of heat resistance in yeast.

5.
Microb Cell Fact ; 17(1): 144, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217195

RESUMEN

BACKGROUND: The yeast Kluyveromyces marxianus is an emerging cell factory for heterologous protein biosynthesis and its use holds tremendous advantages for multiple applications. However, which genes influence the productivity of desired proteins in K. marxianus has so far been investigated by very few studies. RESULTS: In this study, we constructed a K. marxianus recombinant (FIM1/Est1E), which expressed the heterologous ruminal feruloyl esterase Est1E as reporter. UV-60Co-γ irradiation mutagenesis was performed on this recombinant, and one mutant (be termed as T1) was screened and reported, in which the productivity of heterologous Est1E was increased by at least tenfold compared to the parental FIM1/Est1E recombinant. Transcriptional perturbance was profiled and presented that the intracellular vesicle trafficking was enhanced while autophagy be weakened in the T1 mutant. Moreover, whole-genome sequencing combined with CRISPR/Cas9 mediated gene-editing identified a novel functional protein Mtc6p, which was prematurely terminated at Tyr251 by deletion of a single cytosine at 755 loci of its ORF in the T1 mutant. We found that deleting C755 of MTC6 in FIM1 led to 4.86-fold increase in the production of Est1E compared to FIM1, while the autophagy level decreased by 47%; on the contrary, when reinstating C755 of MTC6 in the T1 mutant, the production of Est1E decreased by 66% compared to T1, while the autophagy level increased by 124%. Additionally, in the recombinant with attenuated autophagy (i.e., FIM1 mtc6C755Δ and T1) or interdicted autophagy (i.e., FIM1 atg1Δ and T1 atg1Δ), the productivity of three other heterologous proteins was also increased, specifically the heterologous mannase Man330, the ß-1,4-endoxylanase XynCDBFV or the conventional EGFP. CONCLUSIONS: Our results demonstrated that Mtc6p was involved in regulating autophagy; attenuating or interdicting autophagy would dramatically improve the yields of desired proteins in K. marxianus, and this modulation could be achieved by focusing on the premature mutation of Mtc6p target.


Asunto(s)
Kluyveromyces/genética , Autofagia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Esterasas/biosíntesis , Esterasas/genética , Edición Génica , Genes Bacterianos , Kluyveromyces/metabolismo , Ingeniería Metabólica , Secuenciación Completa del Genoma
6.
Yeast ; 32(10): 643-55, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173815

RESUMEN

6-Azauracil (6 AU) inhibits enzymes in nucleoside synthesis and depletes the intracellular GTP/UTP pool. Mutations in transcriptional elongation machinery, as well as mutations in a variety of other pathways, exaggerate the growth defect of cells in the presence of 6 AU. Thus, identification of mutations that render cells sensitive to 6 AU will benefit study on the basis of 6 AU-sensitive phenotype. Here we performed a genome-wide screen of a fission yeast deletion library. Of 3235 single-gene deletions, 66 mutants displayed at least 50% drop of fitness in the presence of 6 AU and 60 mutants were reported for the first time; five deletions showed synthetic decrease of fitness when combined with deletion of set3(+) , which encodes a transcriptional regulator. Genes conferring tolerance to 6 AU were enriched in various processes, especially in chromosome segregation. Accordingly, genes encoding subunits of CLRC complex and spindle pole body were over-represented. Mutants were subjected to an in vivo transcript length-dependent reporter assay to assess the potential roles of deleted genes in transcriptional elongation. As with the deletions known to affect elongation, nab2Δ, nxt1Δ, rhp18Δ, SPAC24C9.08Δ, clr3Δ and ncs1Δset3Δ mutants exhibited defects in expressing long transcripts. New 6 AU-sensitive mutants identified here will help to elucidate the mechanism of action of 6 AU in the cells. Meanwhile, our study revealed novel genes potentially involved in transcriptional elongation and provided valuable targets for transcription study.


Asunto(s)
Genoma Fúngico , Mutación/efectos de los fármacos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Transcripción Genética/efectos de los fármacos , Uracilo/análogos & derivados , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Uracilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA