Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Chem Commun (Camb) ; 58(64): 8998-9001, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35861624

RESUMEN

A bicyclic pyrone-type species on oxygen-doped carbon catalysts was identified as the active site for the oxygen reduction reaction in acidic solution. It has much higher activity than that of typical nitrogen-doped carbon catalysts (0.219 e s-1 site-1vs. 0.021-0.088 e s-1 site-1 at 0.6 VRHE). The ortho-carbon atom in the carbonyl ring of the pyrone-type species was revealed as the reactive site by theoretical calculations.


Asunto(s)
Carbono , Pironas , Carbono/química , Dominio Catalítico , Oxidación-Reducción , Oxígeno/química
2.
Oncogene ; 39(29): 5214-5227, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32546724

RESUMEN

Aberrant sphingolipid metabolism has been implicated in chemoresistance, but the underlying mechanisms are still poorly understood. Herein we revealed a previously unrecognized mechanism of 5-fluorouracil (5-FU) resistance contributed by high SphK2-upregulated dihydropyrimidine dehydrogenase (DPD) in colorectal cancer (CRC), which is evidenced from human CRC specimens, animal models, and cancer cell lines. TMA samples from randomly selected 60 CRC specimens firstly identified the clinical correlation between high SphK2 and increased DPD (p < 0.001). Then the regulatory mechanism was explored in CRC models of villin-SphK2 Tg mice, SphK2-/-mice, and human CRC cells xenografted nude mice. Assays of ChIP-Seq and luciferase reporter gene demonstrated that high SphK2 upregulated DPD through promoting the HDAC1-mediated H3K56ac, leading to the degradation of intracellular 5-FU into inactive α-fluoro-ß-alanine (FBAL). Lastly, inhibition of SphK2 by SLR080811 exhibited excellent inhibition on DPD expression and potently reversed 5-FU resistance in colorectal tumors of villin-SphK2 Tg mice. Overall, this study manifests that SphK2high conferred 5-FU resistance through upregulating tumoral DPD, which highlights the strategies of blocking SphK2 to overcome 5-FU resistance in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Resistencia a Antineoplásicos/genética , Fluorouracilo/uso terapéutico , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Humanos , Ratones , Regulación hacia Arriba
3.
Oncotarget ; 8(24): 39605-39617, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28465486

RESUMEN

The resistance mechanisms that limit the efficacy of retinoid therapy in cancer are poorly understood. Sphingosine kinase 2 (SphK2) is a highly conserved enzyme that is mainly located in the nucleus and endoplasmic reticulum. Unlike well-studied sphingosine kinase 1 (SphK1) located in the cytosol, little has yet understood the functions of SphK2. Here we show that SphK2 overexpression contributes to the resistance of all-trans retinoic acid (ATRA) therapy in colon cancer through rapid degradation of cytoplasmic retinoid X receptor α (RXRα) by lysine 48 (K48)- and lysine 63 (K63)-based polyubiquitination. Human colonic adenocarcinoma HCT-116 cells transfected with SphK2 (HCT-116Sphk2 cells) demonstrate resistance to ATRA therapy as determined by in vitro and in vivo assays. Sphk2 overexpression increases the ATRA-induced nuclear RXRα export to cytoplasm and then rapidly degrades RXRα through the polyubiquitination pathway. We further show that Sphk2 activates the ubiquitin-proteasome system through the signal mechanisms of (1) K48-linked proteosomal degradation and (2) K63-linked ubiquitin-dependent autophagic degradation. These results provide new insights into the biological functions of Sphk2 and the molecular mechanisms that underlie the Sphk2-mediated resistance to retinoid therapy.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Resistencia a Antineoplásicos/genética , Expresión Génica , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptor alfa X Retinoide/metabolismo , Tretinoina/farmacología , Animales , Autofagia , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Células HCT116 , Humanos , Ligandos , Ratones , Unión Proteica , Transporte de Proteínas , Proteolisis/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Ubiquitinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Oncotarget ; 7(37): 60446-60460, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27507058

RESUMEN

Myricetin is a natural dietary flavonoid compound. We evaluated the efficacy of myricetin against intestinal tumorigenesis in adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mice. Myricetin was given orally once a day for 12 consecutive weeks. APCMin/+ mice fed with myricetin developed fewer and smaller polyps without any adverse effects. Histopathological analysis showed a decreased number of dysplastic cells and degree of dysplasia in each polyp. Immunohistochemical and western blot analysis revealed that myricetin selectively inhibits cell proliferation and induces apoptosis in adenomatous polyps. The effects of myricetin were associated with a modulation the GSK-3ß and Wnt/ß-catenin pathways. ELISA analysis showed a reduced concentration of pro-inflammatory cytokines IL-6 and PGE2 in blood, which were elevated in APCMin/+ mice. The effect of myricetin treatment was more prominent in the adenomatous polyps originating in the colon. Further studies showed that myricetin downregulates the phosphorylated p38 MAPK/Akt/mTOR signaling pathways, which may be the mechanisms for the inhibition of adenomatous polyps by myricetin. Taken together, our data show that myricetin inhibits intestinal tumorigenesis through a collection of biological activities. Given these results, we suggest that myricetin could be used preventatively to reduce the risk of developing colon cancers.


Asunto(s)
Poliposis Adenomatosa del Colon/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Flavonoides/uso terapéutico , Neoplasias Intestinales/tratamiento farmacológico , Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Chrysobalanaceae/inmunología , Dinoprostona/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Serina-Treonina Quinasas TOR/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
5.
Oncotarget ; 7(24): 36767-36782, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27167344

RESUMEN

Despite significant progress, advanced hepatocellular carcinoma (HCC) remains an incurable disease, and the overall efficacy of targeted therapy by Sorafenib remains moderate. We hypothesized that DCP (des-gamma-carboxy prothrombin), a prothrombin precursor produced in HCC, might be one of the reasons linked to the low efficacy of Sorafenib. We evaluated the efficacy of Sorafenib in HLE and SK-Hep cells, both of which are known DCP-negative HCC cell lines. In the absence of DCP, Sorafenib effectively inhibited the growth of HCC and induced cancer cell apoptosis. In the presence of DCP, HCC was resistant to Sorafenib-induced inhibition and apoptosis, as determined by in vitro assays and in mice xenografted with HLE cells. Molecular analysis of HLE xenografted-nude mice showed that DCP activates the transduction of the Ras/Raf/MEK/ERK and Ras/PI3K/Akt/mTOR cascades. DCP might stimulate the formation of compensatory feedback loops in the intricately connected signaling pathways when kinases are targeted by Sorafenib. Our results indicate that DCP antagonizes the inhibitory effects of Sorafenib on HCC through activation of the Ras/Raf/MEK/ERK and Ras/PI3K/Akt/mTOR signaling pathways. Taken together, our findings define a DCP-mediated mechanism of inhibition of Sorafenib in HCC, which is critical for targeting therapy in advanced HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Fosfotransferasas/metabolismo , Precursores de Proteínas/farmacología , Protrombina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Antagonismo de Drogas , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Niacinamida/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sorafenib , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA