Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Small ; : e2405946, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246162

RESUMEN

Under large current densities, the excessive hydroxide ion (OH) consumption hampers alkaline water splitting involving the oxygen evolution reaction (OER). High OH concentration (≈30 wt.%) is often used to enhance the catalytic activity of OER, but it also leads to higher corrosion in practical systems. To achieve higher catalytic activity in low OH concentration, catalysts on magnetic frame (CMF) are built to utilize the local magnetic convection induced from the host frame's magnetic field distributions. This way, a higher reaction rate can be achieved in relatively lower OH concentrations. A CMF model system with catalytically active CoFeOx nanograins grown on the magnetic Ni foam is demonstrated. The OER current of CoFeOx@NF receives ≈90% enhancement under 400 mT (900 mA cm-2 at 1.65 V) compared to that in zero field, and exhibits remarkable durability over 120 h. As a demonstration, the water-splitting performance sees a maximum 45% magnetic enhancement under 400 mT in 1 m KOH (700 mA cm-2 at 2.4 V), equivalent to the concentration enhancement of the same electrode in a more corrosive 2 m KOH electrolyte. Therefore, the catalyst-on-magnetic-frame strategy can make efficient use of the catalysts and achieve higher catalytic activity in low OH concentration by harvesting local magnetic convection.

2.
Hum Exp Toxicol ; 41: 9603271221108320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722787

RESUMEN

Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Lisofosfatidilcolinas , Animales , Ratas , Biomarcadores , Clorpromazina/toxicidad , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Espectrometría de Masas/métodos , Metabolómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA