Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 226: 378-386, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972169

RESUMEN

METTL3-mediated N6-methyladenosine (m6A) modification is critical for gametogenesis and early embryonic development. However, the function of METTL3-mediated m6A modification in the early development of somatic nuclear transfer embryos (SCNT) remains unclear. Here, we found that METTL3 mRNA and protein levels exhibit dynamic changes during the early development of porcine SCNT embryos. The levels of METTL3 mRNA and protein in SCNT embryos at specific developmental stages differ from those in parthenogenetic activation (PA) counterparts. SiRNA injection effectively reduced the levels of METTL3 mRNA and protein in 4-cell embryos and blastocysts. METTL3 knockdown significantly reduced the cleavage and blastocyst rates of SCNT embryos. METTL3 knockdown significantly reduced the number of total cells and trophectoderm (TE) cells in the resulting blastocysts and perturbed cell lineage allocation. In addition, METTL3 knockdown reduced the levels of m6A modification in 4-cell embryos and blastocysts. Importantly, METTL3 knockdown decreased the expression levels of CDX2, GATA3, NANOG and YAP, and increased the expression levels of SOX2 and OCT4. Taken together, these results demonstrate that METTL3-mediated m6A modification regulates early development and lineage differentiation of porcine SCNT embryos.


Asunto(s)
Clonación de Organismos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Metiltransferasas , Animales , Porcinos/embriología , Porcinos/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Técnicas de Transferencia Nuclear/veterinaria , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilación , Técnicas de Silenciamiento del Gen , Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
FASEB J ; 38(13): e23750, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38888878

RESUMEN

Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.


Asunto(s)
Cinesinas , Meiosis , Microtúbulos , Oocitos , Huso Acromático , Animales , Cinesinas/metabolismo , Cinesinas/genética , Meiosis/fisiología , Oocitos/metabolismo , Microtúbulos/metabolismo , Ratones , Huso Acromático/metabolismo , Femenino , Actinas/metabolismo , Cinetocoros/metabolismo
3.
Int J Biol Macromol ; 271(Pt 1): 132451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777006

RESUMEN

Circular RNA (circRNA) is abundantly expressed in preimplantation embryos and embryonic stem cells in mice and humans. However, its function and mechanism in early development of mammalian embryos remain unclear. Here, we showed that circHIRA mediated miR-196b-5p to regulate porcine early embryonic development. We verified the circular feature of circHIRA by sanger sequencing, and proved the authenticity of circHIRA by enzyme digestion test. HIRA and circHIRA were expressed in porcine early embryos, and its expression levels significantly increased from 8-cell stage onwards and reached the maximum at the blastocyst stage. Functional studies revealed that circHIRA knockdown not only significantly reduced the developmental efficiency of embryos from 8-cell stage to blastocyst stage, but also impaired the blastocyst quality. Mechanistically, integrated analysis of miRNA prediction and gene expression showed that circHIRA knockdown significantly increased the expression of miR-196b-5p in porcine early embryos. Furthermore, miR-196b-5p inhibitor injection could rescue the early development of circHIRA knockdown embryos. Taken together, the findings reveal that circHIRA regulates porcine early embryonic development via inhibiting the expression of miR-196b-5p.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , MicroARNs , ARN Circular , Animales , MicroARNs/genética , Desarrollo Embrionario/genética , Porcinos , ARN Circular/genética , Blastocisto/metabolismo , Técnicas de Silenciamiento del Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA