Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 589, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264071

RESUMEN

Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.


Asunto(s)
Inmunoglobulina G , Inmunoglobulinas Intravenosas , Humanos , Animales , Inmunoglobulinas Intravenosas/farmacología , Pollos/metabolismo , Glicosilación , Antiinflamatorios/farmacología
2.
Poult Sci ; 102(1): 102247, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335737

RESUMEN

The chicken has potential as an efficient bioreactor system because of its outstanding protein production capacity and low cost. The CRISPR/Cas9-mediated gene-editing system enables production of highly marketable exogenous proteins in transgenic chicken bioreactors. However, because it takes approximately 18 mo to evaluate the recombinant protein productivity of the bioreactor due to the generation interval from G0 founders to G1 egg-laying hens, to verification of the exogenous protein at the early stage is difficult. Here we propose a system for sequential validation of exogenous protein production in chicken bioreactors as in hatching female chicks as well as in egg-laying hens. We generated chicken OVALBUMIN (OVA) EGFP knock-in (KI) chicken (OVA EGFP KI) by CRISPR/Cas9-mediated nonhomologous end joining at the chicken OVA gene locus. Subsequently, the estrogen analog, diethylstilbestrol (DES), was subcutaneously implanted in the abdominal region of 1-wk-old OVA EGFP KI female chicks to artificially increase OVALBUMIN expression. The oviducts of DES-treated OVA EGFP KI female chicks expressed OVA and EGFP at the 3-wk-old stage (10 d after DES treatment). We evaluated the expression of EGFP protein in the oviduct, along with the physical properties of eggs and egg white from OVA EGFP KI hens. The rapid identification and isolation of exogenous protein can be confirmed at a very early stage and high-yield production is possible by targeting the chicken oviduct.


Asunto(s)
Pollos , Óvulo , Animales , Femenino , Ovalbúmina , Pollos/genética , Pollos/metabolismo , Óvulo/metabolismo , Animales Modificados Genéticamente , Oviductos/metabolismo , Reactores Biológicos
3.
Front Nutr ; 9: 1068558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761986

RESUMEN

The prevalence of obesity-related metabolic diseases caused by insulin resistance is rapidly increasing worldwide. Adiponectin (ADPN), a hormone derived from adipose tissue, is a potential therapeutic agent for insulin resistance. Chickens are considered efficient bioreactors for recombinant protein production because they secrete large amounts of high-concentration proteins from the oviduct. Additionally, chickens express high levels of high-molecular-weight (HMW) ADPN, which is considered the active form in the body. Therefore, in this study, a gene-targeted chicken model was produced in which the gene encoding human ADPN was inserted into Ovalbumin (OVA) using the CRISPR/Cas9 system, and the characteristics of the resulting recombinant ADPN protein were evaluated. As a result, human ADPN was expressed in G1 hen oviducts and egg whites of OVA ADPN knock-in (KI) chickens. The concentration of ADPN in egg white ranged from 1.47 to 4.59 mg/mL, of which HMW ADPN accounted for ∼29% (0.24-1.49 mg/mL). Importantly, egg white-derived ADPN promoted expression of genes related to fatty acid oxidation and activated the 5'-AMP-activated protein kinase (AMPK) signaling pathway in muscle cells. In summary, the OVA gene-targeted chicken bioreactor proved to be an advantageous model for production of human ADPN, and the resulting protein was of sufficient quantity and efficacy for industrial use.

4.
FASEB J ; 35(6): e21630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982347

RESUMEN

The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.


Asunto(s)
Ácido Aspártico/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Influenza A/enzimología , Mutación , Proteínas Nucleares/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Ácido Aspártico/genética , Pollos , ADN Polimerasa Dirigida por ADN/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infecciones por Orthomyxoviridae/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Homología de Secuencia , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA