Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150780, 2024 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-39362030

RESUMEN

The transcription factor LHX2 contains a LIM domain and plays an important role in the development of the vertebrate nervous system. Although much research has been conducted on the function of Lhx2 during cerebral development, its role in postmitotic neuron differentiation in the cerebral cortex remains unknown. Therefore, this study was conducted to determine the function of Lhx2 in dynamic and elaborate developmental processes, including neurogenesis. We first created and confirmed an Lhx2-BAC Gfp transgenic model to three-dimensionally confirm the spatiotemporal expression pattern of Lhx2 during brain development. On this basis, we used the bilateral in utero electroporation technique to express the dominant-negative form of LHX2. LHX2 was confirmed to be important for the migration and callosal projection of postmitotic neurons that form the upper layer of the cerebral cortex during neurogenesis. Additionally, transcriptome analysis confirmed that LHX2 affected the genes involved in neuronal migration and axonal projection. We demonstrated that Lhx2 is important for postmitotic neurons in the cerebral cortex, which migrate to normal positions and extend nerve axons. Taken together, our findings can provide important clues to understanding the relationship between human Lhx2 gene mutations and brain developmental diseases.


Asunto(s)
Axones , Movimiento Celular , Proteínas con Homeodominio LIM , Neocórtex , Neurogénesis , Neuronas , Factores de Transcripción , Animales , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Neocórtex/citología , Neocórtex/metabolismo , Neocórtex/embriología , Neuronas/metabolismo , Neuronas/citología , Ratones , Axones/metabolismo , Axones/fisiología , Ratones Transgénicos , Femenino , Regulación del Desarrollo de la Expresión Génica
3.
Exp Mol Med ; 56(6): 1388-1400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825645

RESUMEN

Preeclampsia is caused by placental hypoxia and systemic inflammation and is associated with reduced placental growth factor (PlGF) and endothelial nitric oxide synthase (eNOS) levels. The molecular signaling axes involved in this process may play a role in the pathogenesis of preeclampsia. Here, we found that hypoxic exposure increased hypoxia-inducible factor-1α (HIF-1α)/Twist1-mediated miR-214-3p biogenesis in trophoblasts, suppressing PlGF production and trophoblast invasion. TNF-α stimulation increased NF-κB-dependent miR-214-3p expression in endothelial cells, impairing eNOS expression and causing endothelial dysfunction. Synthetic miR-214-3p administration to pregnant mice decreased PlGF and eNOS expression, resulting in preeclampsia-like symptoms, including hypertension, proteinuria, and fetal growth restriction. Conversely, miR-214-3p deletion maintained the PlGF and eNOS levels in hypoxic pregnant mice, alleviating preeclampsia-like symptoms and signs. These findings provide new insights into the role of HIF-1/Twist1- and NF-κB-responsive miR-214-3p-dependent PlGF and eNOS downregulation in the pathogenesis of preeclampsia and establish miR-214-3p as a therapeutic or preventive target for preeclampsia and its complications.


Asunto(s)
MicroARNs , FN-kappa B , Óxido Nítrico Sintasa de Tipo III , Factor de Crecimiento Placentario , Preeclampsia , Preeclampsia/metabolismo , Preeclampsia/genética , Animales , MicroARNs/genética , Femenino , Embarazo , FN-kappa B/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Humanos , Factor de Crecimiento Placentario/metabolismo , Factor de Crecimiento Placentario/genética , Hipoxia/metabolismo , Regulación de la Expresión Génica , Modelos Animales de Enfermedad , Trofoblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
4.
J Clin Med ; 13(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792380

RESUMEN

Background: Management of hepatic hemangioma (HH) in infancy ranges from close monitoring to surgical resection. We analyzed the clinical characteristics and outcomes of HH according to its treatment options, with particular focus on challenging cases. Methods: Data of patients diagnosed with HHs in their first year of life and followed up for at least 1 year were retrospectively reviewed and divided into treatment and observation groups. Serial imaging results, serum alpha-fetoprotein (AFP) levels, medications, and clinical outcomes were compared. The detailed clinical progress in the treatment group was reviewed separately. Results: A total of 87 patients (75 in the observation group and 12 in the treatment group) were included. The median HH size at the initial diagnosis and the maximum size were significantly larger in the treatment group than the observation group (2.2 [0.5-10.3] cm vs. 1.0 [0.4-4.0] cm and 2.1 [0.7-13.2] vs. 1.1 [0.4-4.0], respectively; all p < 0.05]. The median initial and last serum AFP levels were significantly higher in the treatment group than in the observation group (76,818.7 vs. 627.2 and 98.4 vs. 8.7, respectively; all p < 0.05). Serum AFP levels in both groups rapidly declined during the first 3 months of life and were almost undetectable after 6 months. Among the challenging cases, a large (14 × 10 × 6.5 cm sized) focal HH was successfully treated using stepwise medical-to-surgical treatment. Conclusions: Patients with large HH and mild symptoms can be treated using stepwise pharmacotherapy. More aggressive surgical treatment of tumors unresponsive to initial pharmacotherapy may help shorten the treatment period and improve outcomes.

5.
BMJ Paediatr Open ; 7(1)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114242

RESUMEN

BACKGROUND: Dexamethasone is widely used as a systemic corticosteroid to treat and prevent bronchopulmonary dysplasia (BPD) in preterm infants. We evaluated the current epidemiology of dexamethasone use to prevent BPD and analyse the factors associated with the response to dexamethasone in very low birthweight infants using a nationwide database. METHODS: We included very low birthweight infants born between January 2013 and December 2020 with a gestational age of 23-31 weeks using data from the Korean Neonatal Network registry. Patients were grouped based on their dexamethasone use into 'Dex' or 'No Dex' groups. Clinical variables and data were collected, and the annual trends of dexamethasone use and the proportion of patients who received dexamethasone according to gestational age were analysed. Respiratory outcomes were compared between the groups. Univariate and multivariate analyses were performed to analyse factors associated with the response to dexamethasone in BPD. RESULTS: Of 11 261 eligible infants, 2313 (20.5%) received dexamethasone, and 1714 (74.1%) of them were diagnosed with moderate-to-severe BPD. The 8-year annual prevalence of dexamethasone use was 17.7-22.3%. The 'Dex' group had more moderate-to-severe BPD, more frequent invasive ventilation use at a postmenstrual age of 36 weeks and longer ventilator duration. Birth weight, 5-minute APGAR score, pulmonary hypertension within the first 28 days, surgical treatment of patent ductus arteriosus, medical treatment of patent ductus arteriosus, pathological chorioamnionitis, hydrocortisone or budesonide use, surgical management of necrotising enterocolitis and fungal sepsis were associated with BPD after dexamethasone use. CONCLUSIONS: Approximately 20.5% of preterm infants received dexamethasone, and the frequency increased as gestational age decreased. Poor response to dexamethasone was associated with antenatal and postnatal inflammation, low birth weight and early pulmonary hypertension.


Asunto(s)
Displasia Broncopulmonar , Conducto Arterioso Permeable , Hipertensión Pulmonar , Lactante , Recién Nacido , Humanos , Femenino , Embarazo , Recien Nacido Prematuro , Dexametasona/uso terapéutico , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/tratamiento farmacológico , Estudios de Cohortes , Conducto Arterioso Permeable/tratamiento farmacológico , Conducto Arterioso Permeable/epidemiología , Conducto Arterioso Permeable/inducido químicamente , Recién Nacido de muy Bajo Peso , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/complicaciones
6.
Artículo en Inglés | MEDLINE | ID: mdl-37681834

RESUMEN

Among the various thermal stress indices, apparent temperature (AT) is closely related to public health indicators, and consequently is widely used by weather agencies around the world. Therefore, in this paper we estimate the changes in AT and contributing components in Korea as a whole and in five major cities (Seoul, Gwanju, Daegu, Daejeon, and Busan) using national standard climate scenarios based on the coupled model inter-comparison project (CMIP6). In the present day, high AT occurs in major cities due to high temperature (TAS) and relative humidity (RH). Our findings reveal that even when TAS is relatively low, large AT occurs with higher humidity. Notably, in future warmer climate conditions, high AT may first appear in the five major cities and then extend to the surrounding areas. An increase in TAS and RH during the pre-hot season (March to June) may lead to earlier occurrence of thermal risks in future warmer climate conditions and more frequent occurrence of high thermal stress events. Our study can serve as a reference for future information on thermal risk changes in Korea. Considering those who have not adapted to high temperature environments, our findings imply that thermal risks will become more serious and that heat adaptation strategies will be needed during the pre-hot season under future warmer climate conditions.


Asunto(s)
Clima , Humanos , Humedad , Estaciones del Año , Seúl , Calor
7.
Anticancer Res ; 43(7): 2995-3001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351974

RESUMEN

BACKGROUND/AIM: Breast cancer is the most common cancer among women and the leading cause of cancer-related deaths worldwide. Despite various therapeutic strategies, its impact on the survival rate and quality of life of patients remains limited. The Forkhead Box J3 (FOXJ3) transcription factor has been implicated in various cancers, including lung cancer, tongue squamous cell carcinoma, prostate cancer, and colorectal cancer. However, the role of FOXJ3 in breast cancer has not been elucidated. This study aimed to investigate the role of FOXJ3 in breast cancer development, migration, and invasion. MATERIALS AND METHODS: FOXJ3 expression was analyzed in patient tissues and breast cancer cell lines. Loss-of-function and gain-of-function studies were performed using MDA-MB-231 and MCF7 cell lines, respectively. Cell proliferation, migration, and invasion assays were conducted, and the effects of FOXJ3 on Snail expression were examined. RESULTS: FOXJ3 is over-expressed in breast cancer tissues compared to normal counterparts and in various breast cancer cell lines. By modulating FOXJ3 expression in breast cancer cell lines, we observed its influence on cell proliferation, migration, and invasion. Microarray analysis and subsequent validation showed that FOXJ3 modulates Snail expression, a well-known transcription factor involved in epithelial-mesenchymal transition. CONCLUSION: FOXJ3 plays a role in cell proliferation, migration, and the regulation of Snail expression and may be a potential therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Células Escamosas , Factores de Transcripción Forkhead , Factores de Transcripción de la Familia Snail , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Calidad de Vida , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
8.
Medicine (Baltimore) ; 102(15): e33474, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058066

RESUMEN

Intravenous patient-controlled analgesia (IV PCA; IVA) is the most widely used method for postoperative pain management. An appropriate IVA regimen is required, depending on the expected intensity of pain after surgery. This study expected that a decrease in the second prescription rate of IVA after elective cesarean section (CS) would help establish an appropriate regimen for the initial IVA. We retrospectively reviewed the records of 632 patients who were prescribed IVA after CS. We classified patients into phase 1 (basal rate 15.00 mcg/hours, bolus dose 15.00 mcg, total volume 100 mL) and phase 2 (basal rate 31.25 mcg/hours, bolus dose 31.25 mcg, nefopam 60 mg, paracetamol 3 g, total volume 160 mL) according to the IVA regimen, and patients in phase 2 were classified into the basal 15 group and basal 30 group according to the basal rate of IVA. We compared the rates of second prescription, drug removal, and side effects of IVA between the 2 phases and the 1 group. We analyzed the data of 631 eligible patients. The second prescription rate of IVA in phase 2 was 3.77%, a significant decrease compared to that in phase 1 (27.48%); however, the incidence of complications in phase 2 was 6.92%, a significant increase compared to that in phase 1 (0.96%). Within phase 2, in the basal 30 group, the basal rate was almost double that in the basal 15 group. However, there were no significant differences in the rate of second prescription, removed drug IVA, or adverse events between the basal 15, and 30 groups. In the case of CS, which has a high degree of postoperative pain, it is beneficial to control acute pain by properly setting the regimen of the initial IVA with a basal rate infusion to nullify a second prescription.


Asunto(s)
Analgesia Controlada por el Paciente , Cesárea , Humanos , Embarazo , Femenino , Analgesia Controlada por el Paciente/métodos , Estudios Retrospectivos , Cesárea/efectos adversos , Cesárea/métodos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/etiología , Acetaminofén/uso terapéutico , Analgésicos Opioides
9.
Cardiovasc Res ; 119(5): 1265-1278, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36534975

RESUMEN

AIMS: The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs. METHODS AND RESULTS: In human tissues, human umbilical artery ECs, and mouse models for loss of function and gain of function of PTP4A1, we conducted histological analysis, immunostaining, laser-captured microdissection assay, lentiviral infection, small interfering RNA transfection, quantitative real-time PCR and reverse transcription-PCR, as well as luciferase reporter gene and chromatin immunoprecipitation assays. Short hairpin RNA-mediated knockdown of PTP4A1 and overexpression of PTP4A1 in ECs indicated that PTP4A1 is critical for inhibiting the expression of cell adhesion molecules (CAMs). PTP4A1 increased the transcriptional activity of upstream stimulatory factor 1 (USF1) by dephosphorylating its S309 residue and subsequently inducing the transcription of tumour necrosis factor-alpha-induced protein 3 (TNFAIP3/A20) and the inhibition of NF-κB activity. Studies on Ptp4a1 knockout or transgenic mice demonstrated that PTP4A1 potently regulates the interleukin 1ß-induced expression of CAMs in vivo. In addition, we verified that PTP4A1 deficiency in apolipoprotein E knockout mice exacerbated high-fat high-cholesterol diet-induced atherogenesis with upregulated expression of CAMs. CONCLUSION: Our data indicate that PTP4A1 is a novel negative regulator of vascular inflammation by inducing USF1/A20 axis-mediated NF-κB inactivation. Therefore, the expression and/or activation of PTP4A1 in ECs might be useful for the treatment of vascular inflammatory diseases.


Asunto(s)
Células Endoteliales , FN-kappa B , Vasculitis , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Factores Estimuladores hacia 5'/metabolismo , Vasculitis/genética , Vasculitis/metabolismo
10.
Oncol Lett ; 24(2): 290, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35928802

RESUMEN

The transcription factor or tumor suppressor protein p53 regulates numerous cellular functions, including cell proliferation, invasion, migration, senescence and apoptosis, in various types of cancer. HS-1793 is an analog of resveratrol, which exhibits anti-cancer effects on various types of cancer, including breast, prostate, colon and renal cancer, and multiple myeloma. However, to the best of our knowledge, the role of HS-1793 in lung cancer remains to be examined. The present study aimed to investigate the anti-cancer effect of HS-1793 on lung cancer and to determine its association with p53. The results revealed that HS-1793 reduced cell proliferation in lung cancer and increased p53 stability, thereby elevating the expression levels of the target genes p21 and mouse double minute 2 homolog (MDM2). When the levels of MDM2, a negative regulator of p53, are increased under normal conditions, MDM2 binds and degrades p53; however, HS-1793 inhibited this binding, confirming that p53 protein stability was increased. In conclusion, the findings of the present study provide new evidence that HS-1793 may inhibit lung cancer proliferation by disrupting the p53-MDM2 interaction.

11.
Biochem Biophys Res Commun ; 623: 96-103, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878429

RESUMEN

The transcription factor FOXG1 plays an important role in inner ear development; however, the cis-regulatory mechanisms controlling the inner-ear-specific expression of FOXG1 are poorly understood. In this study, we aimed to identify the element that specifically regulates FoxG1 expression in the otic vesicle, which develops into the inner ear, through comparative genome analysis between vertebrate species and chromatin immunoprecipitation. The cis-regulatory element (E2) identified showed high evolutionary conservation among vertebrates in the genomic DNA of FoxG1 spanning approximately 3 Mbp. We identified core sequences important for the activity of the otic-vesicle-specific enhancer through in vitro and in vivo reporter assays for various E2 enhancer mutants and determined the consensus sequence for SOX DNA binding. In addition, SoxE, a subfamily of the Sox family, was simultaneously expressed in the otic vesicles of developing embryos and showed a similar protein expression pattern as that of FoxG1. Furthermore, SOXE transcription factors induced specific transcriptional activity through the FoxG1 Otic enhancer (E2b). These findings suggest that the interaction between the otic enhancer of FoxG1 and SOXE transcription factor, in which the otic expression of FoxG1 is evolutionarily well-conserved, is important during early development of the inner ear, a sensory organ important for survival in nature.


Asunto(s)
Oído Interno , Factores de Transcripción SOXE , Animales , ADN/metabolismo , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXE/genética , Factores de Transcripción/metabolismo
12.
PLoS One ; 17(6): e0269267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35658064

RESUMEN

The East Asian summer monsoon (EASM) is an influential monsoon system that provides two-thirds of the annual precipitation in the Asian region. Therefore, considerable attention has been paid to the changes in future climate. Thus far, studies on EASM characteristics have not been conducted considering specific global warming level (GWL) using Coupled Model Inter-comparison Project 6 (CMIP6) simulations. We analyze the EASM characteristics in present-day (PD) and the changes in EASM corresponding to the projections at 1.5, 2.0, and 3.0°C GWLs. The newly released 30 CMIP6 models effectively captured the migration of the monsoon in PD with a pattern correlation coefficient of 0.91, which is an improvement over that reported in previous studies. As a result of the separate analysis of the P1 (first primary peak; 33-41 pentad) and P2 (from P1 to the withdrawal; 42-50 pentad) periods, a higher frequency of weak to moderate precipitation in P2 and a smaller amount of moderate to extreme precipitation in P1 are mainly occurred. The CMIP6 models project increasing precipitation of approximately 5.7%°C-1, 4.0%°C-1, and 3.9%°C-1 for the three GWLs, respectively, with longer durations (earlier onset and delayed termination). Under the three GWLs, the projected precipitation frequency decreases below 6 mm d-1 (76th percentile) and significant increases above 29 mm d-1 (97th percentile). These changes in precipitation frequency are associated with an increasing distribution of precipitation amount above 97th percentile. Additionally, these tendencies in P1 and P2 are similar to that of the total period, while the maximum changes occur in 3.0°C GWL. In particular, future changes in EASM accelerate with continuous warming and are mainly affected by enhanced extreme precipitation (above 97th percentile). Our findings are expected to provide information for the implementation of sustainable water management programs as a part of national climate policy.


Asunto(s)
Cambio Climático , Tormentas Ciclónicas , Clima , Predicción , Estaciones del Año
13.
Mol Psychiatry ; 27(4): 2030-2041, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165395

RESUMEN

Cerebellar deficits with Purkinje cell (PCs) loss are observed in several neurologic disorders. However, the underlying mechanisms as to how the cerebellum is affected during development remain unclear. Here we demonstrated that specific inactivation of murine Ebp1 in the central nervous system causes a profound neuropathology characterized by reduced cerebellar volume and PCs loss with abnormal dendritic development, leading to phenotypes including motor defects and schizophrenia (SZ)-like behaviors. Loss of Ebp1 leads to untimely gene expression of Fbxw7, an E3 ubiquitin ligase, resulting in aberrant protein degradation of PTF1A, thereby eliciting cerebellar defects. Reinstatement of Ebp1, but not the Ebp1-E183Ter mutant found in SZ patients, reconstituted cerebellar architecture with increased PCs numbers and improved behavioral phenotypes. Thus, our findings indicate a crucial role for EBP1 in cerebellar development, and define a molecular basis for the cerebellar contribution to neurologic disorders such as SZ.


Asunto(s)
Enfermedades Cerebelosas , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Esquizofrenia , Animales , Enfermedades Cerebelosas/metabolismo , Cerebelo/patología , Humanos , Ratones , Células de Purkinje/metabolismo , Proteínas de Unión al ARN/genética , Esquizofrenia/metabolismo
14.
Redox Biol ; 48: 102190, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798428

RESUMEN

Cancer stem cells (CSCs) initiate tumor formation and are known to be resistant to chemotherapy. A metabolic alteration in CSCs plays a critical role in stemness and survival. However, the association between mitochondrial energy metabolism and the redox system remains undefined in colon CSCs. In this study, we assessed the role of the Sulfiredoxin-Peroxiredoxin (Srx-Prx) redox system and mitochondrial oxidative phosphorylation (OXPHOS) in maintaining the stemness and survival of colon CSCs. Notably, Srx contributed to the stability of PrxI, PrxII, and PrxIII proteins in colon CSCs. Increased Srx expression promoted the stemness and survival of CSCs and was important for the maintenance of the mitochondrial OXPHOS system. Furthermore, Nrf2 and FoxM1 led to OXPHOS activation and upregulated expression of Srx-Prx redox system-related genes. Therefore, the Nrf2/FoxM1-induced Srx-Prx redox system is a potential therapeutic target for eliminating CSCs in colon cancer.

15.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685731

RESUMEN

TWIK-1 is the first identified member of the two-pore domain potassium (K2P) channels that are involved in neuronal excitability and astrocytic passive conductance in the brain. Despite the physiological roles of TWIK-1, there is still a lack of information on the basic expression patterns of TWIK-1 proteins in the brain. Here, using a modified bacterial artificial chromosome (BAC), we generated a transgenic mouse (Tg mouse) line expressing green fluorescent protein (GFP) under the control of the TWIK-1 promoter (TWIK-1 BAC-GFP Tg mice). We confirmed that nearly all GFP-producing cells co-expressed endogenous TWIK-1 in the brain of TWIK-1 BAC-GFP Tg mice. GFP signals were highly expressed in various brain areas, including the dentate gyrus (DG), lateral entorhinal cortex (LEC), and cerebellum (Cb). In addition, we found that GFP signals were highly expressed in immature granule cells in the DG. Finally, our TWIK-1 BAC-GFP Tg mice mimic the upregulation of TWIK-1 mRNA expression in the hippocampus following the injection of kainic acid (KA). Our data clearly showed that TWIK-1 BAC-GFP Tg mice are a useful animal model for studying the mechanisms regulating TWIK-1 gene expression and the physiological roles of TWIK-1 channels in the brain.


Asunto(s)
Cromosomas Artificiales Bacterianos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Animales , Cerebelo/metabolismo , Giro Dentado/metabolismo , Corteza Entorrinal/metabolismo , Ácido Kaínico , Ratones Transgénicos , Modelos Animales , Neuroglía/metabolismo , Neuronas/metabolismo , Reproducibilidad de los Resultados , Regulación hacia Arriba
16.
Artículo en Inglés | MEDLINE | ID: mdl-34201984

RESUMEN

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Asia , China , Exposición a Riesgos Ambientales , Asia Oriental , India , Material Particulado/análisis
17.
Neuron ; 107(6): 1197-1211.e9, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32707082

RESUMEN

Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.


Asunto(s)
Orientación del Axón , Células-Madre Neurales/citología , Neuroglía/citología , Animales , Axones/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Espinas Dendríticas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Globo Pálido/citología , Globo Pálido/crecimiento & desarrollo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Tractos Piramidales/citología , Tractos Piramidales/crecimiento & desarrollo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
18.
Biochem Biophys Res Commun ; 521(4): 874-879, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31708105

RESUMEN

The laminar structure, a unique feature of the mammalian cerebrum, is formed by a number of genes in a highly complex process. The pyramidal neurons that make up each layer of the cerebrum are functionally characterized by specific gene expressions. In particular, Cux1 and Cux2, which are specifically expressed in layer II-IV neurons, are known to regulate dendritic branching, spine morphology, and synapse formation. However, it is still unknown how their expression is regulated transcriptionally. Here we constructed Cux2-mCherry transgenic mice that reproduce the cortical layer II-IV-specific expression of Cux2, a member of the Cut/Cux/CDP family, using BAC transgenesis and a variety of coordinated cortical layer markers that are known to date. Our immunohistochemistry analysis shows that mCherry was expressed in cortical layer II-IV and the corpus callosum in the same way as endogenous Cux2 without ectopic expression. We also identified a region of 220 bp that is highly conserved in mammals and controls specific cerebral expression of Cux2, using comparative genome analysis and in vivo reporter assays. Furthermore, we confirm that Lhx2, whose expression in cortical layer II-IV is similar to that of the Cux2 enhancer, can act as a transcriptional activator. These results suggest that cortical layer II-IV expression of Cux2 can be regulated by the interaction of Cux2-E1 and Lhx2, and that their failure to co-regulate is associated with neurodevelopmental disorders such as autism and schizophrenia.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/genética , Animales , Sitios de Unión , Corteza Cerebral/fisiología , Cromosomas Artificiales Bacterianos , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/metabolismo , Proteínas Luminiscentes/genética , Ratones Transgénicos , Células Piramidales/metabolismo , Factores de Transcripción/metabolismo , Proteína Fluorescente Roja
19.
J Vis Exp ; (139)2018 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272663

RESUMEN

For evaluation of a new therapeutic agent for immunotherapy or vaccination, analysis of immune cell activation in lymphatic tissues is essential. Here, we investigated immunological effects of a novel lipid-DNA immunostimulant in nanoparticle form from different administration routes in the mouse: oral, intranasal, subcutaneous, footpad, intraperitoneal, and intravenous. These injections will directly influence the immune response, and harvesting lymphatic tissues and analysis of dendritic cell (DC) activation in the tissues are crucial parts of these evaluations. The extraction of mediastinal lymph nodes (mLNs) is important but quite complex because of the size and location of this organ. A stepwise procedure for harvesting the inguinal lymph node (iLN), mLN, and spleen and analyzing DC activation by flow cytometry is described.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Tejido Linfoide/citología , Adyuvantes Inmunológicos/química , Animales , ADN/química , Citometría de Flujo , Inyecciones , Lípidos/química , Tejido Linfoide/inmunología , Ratones , Nanopartículas/química
20.
Cancer Lett ; 432: 205-215, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29933047

RESUMEN

Multiple myeloma (MM) is a neoplastic plasma cell disorder with high disease recurrence rates. Novel therapeutic approaches capable of improving outcomes in patients with MM are urgently required. The AKT signalling plays a critical regulatory role in MM pathophysiology, including survival, proliferation, metabolism, and has emerged as a key therapeutic target. Here, we identified a novel AKT inhibitor, HS1793, and defined its mechanism of action and clinical significance in MM. HS1793 disrupted the interaction between AKT and heat shock protein 90, resulting in protein phosphatase 2A-modulated phosphorylated-AKT (p-AKT) reduction. Moreover, we observed reductions in the kinase activity of the AKT downstream target, IκB kinase alpha, and the transcriptional activity of nuclear factor kappa B, which induced mitochondria-mediated cell death in MM cells exclusively. We confirmed the cytotoxicity and specificity of HS1793 via PET-CT imaging of a metastatic mouse model generated using human MM cells. We also evaluated the cytotoxic effects of HS1793 in primary and relapsed MM cells isolated from patients. Thus, HS1793 offers great promise in eliminating MM cells and improving therapeutic responses in primary and relapsed/refractory MM patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mieloma Múltiple/patología , Naftoles/farmacología , Recurrencia Local de Neoplasia/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Resorcinoles/farmacología , Anciano , Animales , Apoptosis , Proliferación Celular , Femenino , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA