Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Physiol Rep ; 12(11): e16091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862270

RESUMEN

Sildenafil, a phosphodiesterase-5 (PDE5) inhibitor, has been shown to improve insulin sensitivity in animal models and prediabetic patients. However, its other metabolic effects remain poorly investigated. This study examines the impact of sildenafil on insulin secretion in MIN6-K8 mouse clonal ß cells. Sildenafil amplified insulin secretion by enhancing Ca2+ influx. These effects required other depolarizing stimuli in MIN6-K8 cells but not in KATP channel-deficient ß cells, which were already depolarized, indicating that sildenafil-amplified insulin secretion is depolarization-dependent and KATP channel-independent. Interestingly, sildenafil-amplified insulin secretion was inhibited by pharmacological inhibition of R-type channels, but not of other types of voltage-dependent Ca2+ channels (VDCCs). Furthermore, sildenafil-amplified insulin secretion was barely affected when its effect on cyclic GMP was inhibited by PDE5 knockdown. Thus, sildenafil stimulates insulin secretion and Ca2+ influx through R-type VDCCs independently of the PDE5/cGMP pathway, a mechanism that differs from the known pharmacology of sildenafil and conventional insulin secretory pathways. Our results reposition sildenafil as an insulinotropic agent that can be used as a potential antidiabetic medicine and a tool to elucidate the novel mechanism of insulin secretion.


Asunto(s)
Calcio , Secreción de Insulina , Células Secretoras de Insulina , Insulina , Inhibidores de Fosfodiesterasa 5 , Citrato de Sildenafil , Citrato de Sildenafil/farmacología , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Secreción de Insulina/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Calcio/metabolismo , Insulina/metabolismo , Línea Celular
2.
Front Endocrinol (Lausanne) ; 15: 1380779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919481

RESUMEN

Objective: Aromatherapy is a holistic healing method to promote health and well-being by using natural plant extracts. However, its precise mechanism of action and influence on the endocrine system remains unclear. Since recent studies reported that a neuropeptide, oxytocin, can attenuate anxiety, we hypothesized that if oxytocin secretion is promoted through aromatherapy, it may improve mood and anxiety. The present study is aimed to investigate the relationship between oxytocin and the effects of aromatherapy with lavender oil on anxiety level, by measuring salivary oxytocin levels in healthy men and women. Methods: We conducted a randomized open crossover trial in 15 men and 10 women. Each participant received a placebo intervention (control group) and aromatherapy with lavender oil (aromatherapy group). For the aromatherapy group, each participant spent a 30-min session in a room with diffused lavender essential oil, followed by a 10-min hand massage using a carrier oil containing lavender oil. Anxiety was assessed using the State-Trait Anxiety Inventory (STAI) before the intervention, 30-min after the start of intervention, and after hand massage, in both groups. Saliva samples were collected at the same time points of the STAI. Results: In women, either aromatherapy or hand massage was associated with a reduction in anxiety levels, independently. Moreover, salivary oxytocin levels were increased after aromatherapy. On the other hand, in men, anxiety levels were decreased after aromatherapy, as well as after hand massage, regardless of the use of lavender oil. However, there were no significant differences in changes of salivary oxytocin levels between the control and aromatherapy groups during the intervention period. Interestingly, there was a positive correlation between anxiety levels and salivary oxytocin levels before the intervention, but a negative correlation was observed after hand massage with lavender oil. Conclusion: The results of the present study indicate that in women, aromatherapy with lavender oil attenuated anxiety with increase in oxytocin level in women, whereas in men, there was no clear relationship of aromatherapy with anxiety or oxytocin levels but, there was a change in correlation between anxiety and oxytocin. The results of the present study suggest that the effect of aromatherapy can vary depending on sex.


Asunto(s)
Ansiedad , Aromaterapia , Estudios Cruzados , Lavandula , Aceites Volátiles , Oxitocina , Aceites de Plantas , Saliva , Humanos , Oxitocina/metabolismo , Aromaterapia/métodos , Femenino , Masculino , Saliva/química , Saliva/metabolismo , Ansiedad/terapia , Ansiedad/metabolismo , Adulto , Aceites Volátiles/uso terapéutico , Lavandula/química , Adulto Joven , Caracteres Sexuales
3.
Commun Biol ; 7(1): 547, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714803

RESUMEN

Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain.


Asunto(s)
Encéfalo , Neuronas , Animales , Neuronas/metabolismo , Encéfalo/metabolismo , Ligandos , Ratones , Fenilacetatos/farmacología , Fenilacetatos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Masculino
4.
Front Endocrinol (Lausanne) ; 15: 1387964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742193

RESUMEN

The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.


Asunto(s)
Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Inflamación , Ratones Endogámicos C57BL , Obesidad , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sacarosa/administración & dosificación , Preferencias Alimentarias/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Oxitocina/farmacología , Medicina Kampo , Pueblos del Este de Asia
5.
Neuroendocrinology ; : 1-19, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599201

RESUMEN

INTRODUCTION: GLP-1 receptor agonists are the number one drug prescribed for the treatment of obesity and type 2 diabetes. These drugs are not, however, without side effects, and in an effort to maximize therapeutic effect while minimizing adverse effects, gut hormone co-agonists received considerable attention as new drug targets in the fight against obesity. Numerous previous reports identified the neuropeptide oxytocin (OXT) as a promising anti-obesity drug. The aims of this study were to evaluate OXT as a possible co-agonist for GLP-1 and examine the effects of its co-administration on food intake (FI) and body weight (BW) in mice. METHODS: FI and c-Fos levels were measured in the feeding centers of the brain in response to an intraperitoneal injection of saline, OXT, GLP-1, or OXT/GLP-1. The action potential frequency and cytosolic Ca2+ ([Ca2+]i) in response to OXT, GLP-1, or OXT/GLP-1 were measured in ex vivo paraventricular nucleus (PVN) neuronal cultures. Finally, FI and BW changes were compared in diet-induced obese mice treated with saline, OXT, GLP-1, or OXT/GLP-1 for 13 days. RESULTS: Single injection of OXT/GLP-1 additively decreased FI and increased c-Fos expression specifically in the PVN and supraoptic nucleus. Seventy percent of GLP-1 receptor-positive neurons in the PVN also expressed OXT receptors, and OXT/GLP-1 co-administration dramatically increased firing and [Ca2+]i in the PVN OXT neurons. The chronic OXT/GLP-1 co-administration decreased BW without changing FI. CONCLUSION: Chronic OXT/GLP-1 co-administration decreases BW, possibly via the activation of PVN OXT neurons. OXT might be a promising candidate as an incretin co-agonist in obesity treatment.

6.
Br J Clin Pharmacol ; 90(1): 354-359, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37596710

RESUMEN

Clozapine (CLZ) is extensively used for treatment-resistant schizophrenia (TRS) with caution to avoid serious adverse events such as agranulocytosis and drug-drug interactions (DDIs). In the current report, we present a case of a 35-year-old male non-smoking TRS patient whose steady-state plasma trough concentrations (Ctrough ) of CLZ and its active metabolite, N-desmethylclozapine (NDMC), were significantly increased after initiating oral administration of lemborexant (LEM), a dual orexin receptor antagonist, for the treatment of insomnia. The patient experienced oversedation with sleepiness and fatigue while maintaining high levels of Ctrough of CLZ. The increased concentrations of CLZ returned to normal ranges after the discontinuation of LEM dosing, implying a pharmacokinetic DDI between CLZ and LEM. To gain insight into possible mechanisms, we performed in vitro assays of CYP1A2- and CYP3A4-mediated CLZ metabolism by measuring the formations of NDMC and clozapine N-oxide (CNO). In accordance with previous studies, the incubation of CLZ with each enzyme resulted in the production of both metabolites. LEM had only a weak inhibitory effect on CYP1A2- and CYP3A4-mediated CLZ metabolism. However, the preincubation of LEM with CYP3A4 in the presence of NADPH showed a significant enhancement of inhibitory effects on CLZ metabolism with IC50 values for the formations of CNO and NDMC of 2.8 µM and 4.1 µM, respectively, suggesting that LEM exerts as a potent time-dependent inhibitor for CYP3A4. Taken together, the results of the current study indicate that co-medication of CLZ with LEM may lead to increase in exposure to CLZ and risks of CLZ-related adverse events.


Asunto(s)
Antipsicóticos , Clozapina , Masculino , Humanos , Adulto , Clozapina/efectos adversos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Antipsicóticos/efectos adversos , Interacciones Farmacológicas
7.
Neuroendocrinology ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071956

RESUMEN

INTRODUCTION: In nurturing systems, the oxytocin (Oxt)-oxytocin receptor (Oxtr) system is important for parturition, and essential for lactation and parental behavior. Among the nerve nuclei that express Oxtr, the lateral septal nucleus (LS) and medial preoptic area (MPOA) are representative regions that control maternal behavior. METHODS: We investigated the role of Oxtr- and Oxtr-expressing neurons, located in the LS and MPOA, in regulating maternal behavior by regulating Oxtr expression in a region-specific manner using recombinant mice and adeno-associated viruses. We quantified the prolactin (Prl) concentrations in the pituitary gland and plasma when Oxtr expression in the MPOA was reduced. RESULTS: The endogenous Oxtr gene in the neurons of the LS did not seem to play an essential role in maternal behavior. Conversely, decreased Oxtr expression in the MPOA increased the frequency of pups being left outside the nest and reduced their survival rate. Deletion of Oxtr in MPOA neurons prevented elevation of Prl levels in plasma and pituitary at postpartum day 2. DISCUSSION/CONCLUSION: Oxtr-expressing neurons in the MPOA are involved in the postpartum production of Prl. We confirmed the essential functions of Oxtr-expressing neurons and the Oxtr gene itself in the MPOA for the sustainability of maternal behavior, which involved Oxtr-dependent induction of Prl.

8.
Front Public Health ; 11: 1264056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106883

RESUMEN

Objective: Checkpoint inhibitors (CPIs) can trigger complications related to the autoimmune process such as CPI-triggered diabetes mellitus. The typical treatment for CPI-triggered diabetes is insulin, but a detailed therapeutic method has not yet been established. To prevent severe symptoms and mortality of diabetic ketoacidosis in advanced-stage cancer patients, the establishment of effective treatment of CPI-triggered diabetes, other than insulin therapy, is required. Methods: We present a case of a 76-year-old man with CPI-triggered diabetes who was treated with nivolumab and ipilimumab for lung cancer. We also conducted a systematic review of 48 case reports of type 1 diabetes associated with nivolumab and ipilimumab therapy before June 2023. Results: The patient's hyperglycemia was not sufficiently controlled by insulin therapy, and after the remission of ketoacidosis, the addition of a sodium-glucose transporter (SGLT) 2 inhibitor, dapagliflozin, improved glycemic control. Most of the reported nivolumab/ipilimumab-induced type 1 diabetes was treatable with insulin, but very few cases required additional oral anti-diabetic agents to obtain good glucose control. Conclusion: Although SGLT2 inhibitors have been reported to have adverse effects on ketoacidosis, recent studies indicate that the occurrence of ketoacidosis is relatively rare. Considering the pathological mechanism of CPI-triggered diabetes, SGLT2 inhibitors could be an effective choice if they are administered while carefully monitoring the patient's ketoacidosis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cetoacidosis Diabética , Neoplasias Pulmonares , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Humanos , Anciano , Nivolumab/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Ipilimumab/uso terapéutico , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Cetoacidosis Diabética/inducido químicamente , Cetoacidosis Diabética/tratamiento farmacológico , Insulina/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico
9.
Dose Response ; 21(3): 15593258231203611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780606

RESUMEN

Sulfamethoxazole (SMX) is widely used as an antibiotic in the clinical application with side effects of hypoglycemia. This is because SMX contains the sulfonamide structure, which closes ATP-sensitive potassium (KATP) channels and induces insulin secretion. However, there are no detail reports that measure the effective dose that can close KATP channels and induce insulin secretion. In this study, whole-cell patch clamp recording was utilized to measure the effect of SMX on KATP channel activity on pancreatic ß cells. Also, the static incubation assay with mice islets was assessed to measure the insulin secretion capacity of SMX. SMX was shown to inhibit the KATP channel in pancreatic ß cell membrane and induce insulin secretion in relatively high concentration. The half maximal inhibitory concentration (IC50) for KATP channel activity of SMX was .46 ± .08 mM. It was also shown that a near IC50 concentration of SMX (.5 mM) was able to nearly fully block the KATP channel when simultaneously applied with low concentration sulfonylurea, tolbutamide (.01 mM). Our present data provide important information for the clinical use of SMX to treat infection in diabetic patients using sulfonylureas.

10.
BMC Res Notes ; 16(1): 202, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697384

RESUMEN

OBJECTIVE: Insulin secretion is regulated by ATP-sensitive potassium (KATP) channels in pancreatic beta-cells. Peroxisome proliferator-activated receptors (PPAR) α ligands are clinically used to treat dyslipidemia. A PPARα ligand, fenofibrate, and PPARγ ligands troglitazone and 15-deoxy-∆12,14-prostaglandin J2 are known to close KATP channels and induce insulin secretion. The recently developed PPARα ligand, pemafibrate, became a new entry for treating dyslipidemia. Because pemafibrate is reported to improve glucose intolerance in mice treated with a high fat diet and a novel selective PPARα modulator, it may affect KATP channels or insulin secretion. RESULTS: The effect of fenofibrate (100 µM) and pemafibrate (100 µM) on insulin secretion from MIN6 cells was measured by using batch incubation for 10 and 60 min in low (2 mM) and high (10 mM) glucose conditions. The application of fenofibrate for 10 min significantly increased insulin secretion in low glucose conditions. Pemafibrate failed to increase insulin secretion in all of the conditions experimented in this study. The KATP channel activity was measured by using whole-cell patch clamp technique. Although fenofibrate (100 µM) reduced the KATP channel current, the same concentration of pemafibrate had no effect. Both fenofibrate and pemafibrate had no effect on insulin mRNA expression.


Asunto(s)
Fenofibrato , Animales , Ratones , PPAR alfa , Ligandos , Secreción de Insulina , Glucosa , Canales KATP , Adenosina Trifosfato
11.
Kobe J Med Sci ; 69(2): E64-E78, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37661705

RESUMEN

The Great East Japan Earthquake that occurred on March 11, 2011, was one of the largest natural disasters in modern times. Publication in medical journals is important aspects of the academic promotion process, and is thus important for all scientists. However, little is known about whether and how substantial natural disasters affect gender disparities in academic productivity in disaster-affected areas. We hypothesized that the Great East Japan Earthquake widened the existing disparities in scientific publishing between male and female researchers. To test this hypothesis, this retrospective observational study using existing databases was conducted. We extracted from the MEDLINE database all types of biomedical articles published from March 11, 2007, to March 11, 2015, by three medical universities in a disaster-affected area of Japan. Differences in the proportion of female first authorship during the 4 years before and after the Great East Japan Earthquake were compared. A total of 5,873 papers were analyzed. The proportion of female first authors significantly declined after the Great East Japan Earthquake (20.5% vs. 14.1%; odds ratio 0.64; 95% confidence interval 0.56-0.73). A similar trend was identified across all prespecified subgroups, including clinical department; original article; public medical university; and prestigious journal with impact factor >6. Reference data from two medical universities minimally affected by the Great East Japan Earthquake showed the opposite trend. These results collectively suggest that large natural disasters can reinforce existing gender disparities in first authorship in biomedicine.


Asunto(s)
Terremotos , Femenino , Masculino , Humanos , Universidades , Autoria , Japón
12.
J Biosci Bioeng ; 134(3): 264-268, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781190

RESUMEN

To demonstrate the accurate analysis of catecholamines and amino acid using derivatization reagents, we investigated the reaction conditions for 2,4,6-triethyl-3,5-dimethyl pyrylium trifluoromethanesulfonate (Py-Tag), derivatization of the targets dopamine (DA) and γ-aminobutyric acid (GABA) on tissue sections, and constructed an optimized reaction compartment. Ten different Py-Tag reaction conditions with the targets were considered. The optimal condition for the Py-Tag reaction with the targets was identified as a 70% methanol with 5% trimethylamine (v/v) solution at 60 °C under homogenous conditions. To reproduce this reaction on tissue sections, we constructed a reaction compartment to maintain humidity levels and facilitate the derivatization reaction. Moreover, visualization of DA and GABA was archived by derivatized-imaging mass spectrometry. Brain sections of unilateral 6-OHDA lesioned Parkinson's disease model rats showed Py-Tag DA (m/z 328.3) in the unilateral striatum and Py-Tag GABA (m/z 278.3) in the cerebral cortex, striatum, hippocampus and hypothalamus. Using the Parkinson's disease model rat brain, images with left-right differences were obtained for the localization of DA and GABA. These findings indicate that it is important to consider the reaction conditions that allow high reaction efficiency between DA or GABA and Py-Tag as well as high quality imaging of sections.


Asunto(s)
Enfermedad de Parkinson , Animales , Dopamina/análisis , Dopamina/metabolismo , Indicadores y Reactivos , Espectrometría de Masas , Mesilatos , Enfermedad de Parkinson/metabolismo , Ratas , Ácido gamma-Aminobutírico/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-35842075

RESUMEN

BACKGROUND: Oxytocin is a neuropeptide synthesized in the hypothalamus. In addition to its role in parturition and lactation, oxytocin mediates social behavior and pair bonding. The possibility of using oxytocin to modify behavior in neurodevelopmental disorders, such as autism spectrum disorder, is of clinical interest. Microglia are tissue-resident macrophages with roles in neurogenesis, synapse pruning, and immunological mediation of brain homeostasis. Recently, oxytocin was found to attenuate microglial secretion of proinflammatory cytokines, but the source of this oxytocin was not established. This prompted us to investigate whether microglia themselves were the source. METHODS: We examined oxytocin expression in human and murine brain tissue in both sexes using immunohistochemistry. Oxytocin mRNA expression and secretion were examined in isolated murine microglia from wild type and oxytocin-knockout mice. Also, secretion of oxytocin and cytokines was measured in cultured microglia (MG6) stimulated with lipopolysaccharide (LPS). RESULTS: We identified oxytocin expression in microglia of human brain tissue, cultured microglia (MG6), and primary murine microglia. Furthermore, LPS stimulation increased oxytocin mRNA expression in primary murine microglia and MG6 cells, and oxytocin secretion as well. A positive correlation between oxytocin and IL-1ß, IL-10 secretion emerged, respectively. CONCLUSION: This may be the first demonstration of oxytocin expression in microglia. Functionally, oxytocin might regulate inflammatory cytokine release from microglia in a paracrine/autocrine manner.


Asunto(s)
Trastorno del Espectro Autista , Microglía , Animales , Trastorno del Espectro Autista/metabolismo , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Oxitocina/metabolismo , ARN Mensajero/metabolismo
14.
Clin Pharmacol Ther ; 112(3): 627-634, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678032

RESUMEN

Green tea (GT) alters the disposition of a number of drugs, such as nadolol and lisinopril. However, it is unknown whether GT affects disposition of hydrophilic anti-allergic drugs. The purpose of this study was to investigate whether pharmacokinetics of fexofenadine and pseudoephedrine are affected by catechins, major GT components. A randomized, open, 2-phase crossover study was conducted in 10 healthy Japanese volunteers. After overnight fasting, subjects were simultaneously administered fexofenadine (60 mg) and pseudoephedrine (120 mg) with an aqueous solution of green tea extract (GTE) containing (-)-epigallocatechin gallate (EGCG) of ~ 300 mg or water (control). In vitro transport assays were performed using HEK293 cells stably expressing organic anion transporting polypeptide (OATP)1A2 to evaluate the inhibitory effect of EGCG on OATP1A2-mediated fexofenadine transport. In the GTE phase, the area under the plasma concentration-time curve and the amount excreted unchanged into urine for 24 hours of fexofenadine were significantly decreased by 70% (P < 0.001) and 67% (P < 0.001), respectively, compared with control. There were no differences in time to maximum plasma concentration and the elimination half-life of fexofenadine between phases. Fexofenadine was confirmed to be a substrate of OATP1A2, and EGCG (100 and 1,000 µM) and GTE (0.1 and 1 mg/mL) inhibited OATP1A2-mediated uptake of fexofenadine. On the contrary, the concomitant administration of GTE did not influence the pharmacokinetics of pseudoephedrine. These results suggest that intake of GT may result in a markedly reduced exposure of fexofenadine, but not of pseudoephedrine, putatively by inhibiting OATP1A2-mediated intestinal absorption.


Asunto(s)
Catequina , Seudoefedrina , Antioxidantes , Catequina/análisis , Catequina/farmacocinética , Estudios Cruzados , Células HEK293 , Voluntarios Sanos , Humanos , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología , , Terfenadina/análogos & derivados
15.
Aging (Albany NY) ; 14(11): 4634-4652, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35660668

RESUMEN

The ventral tegmental area (VTA), substantia nigra pars compacta (SNpc) and nucleus accumbens (NAc) are involved in the regulation of appetite and motivational behaviors. A traditional Japanese (Kampo) medicine, ninjin'yoeito (NYT), has been reported to improve decreased motivation and anorexia in patients with Alzheimer's disease and apathy-like model mice. Thus, NYT may affect the activities of neurons in the VTA, SNpc and NAc. However, little is known about the underlying mechanisms of NYT. Here, we investigated the effects of NYT on the electrophysiological properties of dopaminergic neurons in the VTA and SNpc, as well as on those of medium spiny neurons (MSNs) in the NAc (core and shell subregions), by applying the patch-clamp technique in the brain slices. NYT reduced the resting membrane potential of VTA and SNpc dopaminergic neurons. In contrast, NYT increased the firing frequency of NAc MSNs accompanied by shortened first spike latency and interspike interval. Furthermore, NYT attenuated the inward rectification and sustained outward currents. In conclusion, NYT may directly influence the excitability of dopaminergic neurons in the VTA and SNpc, as well as MSNs in the NAc (core and shell). NYT may modulate dopamine signals in appetite and motivational behaviors.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Animales , Medicamentos Herbarios Chinos , Humanos , Ratones , Núcleo Accumbens/fisiología , Porción Compacta de la Sustancia Negra
16.
Mol Cell Neurosci ; 120: 103734, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508277

RESUMEN

One of the major properties of microglia is to secrete cytokines as a reaction to stress such as lipopolysaccharide (LPS) application. The mechanism of cytokine secretion from the microglia upon stress through the inflammasome-mediated release process is well studied, and the voltage-gated Kv1.3 channel is known to play an important role in this process. Most previous studies investigated long-term inflammasome-mediated cytokine release (at least over 4 h) and there are only a few studies on the acute reaction (within minutes order) of the microglia to stress and its cytokine secretion capacity. In this study, we found that LPS induced an increase in Kir2.1 current within 15 min after administration but had no effect on voltage-dependent outward currents. Moreover, cytological and western blot analysis revealed that the increase in the Kir2.1 channel current after LPS administration was induced by the translocation of Kir2.1 from the cytoplasm to the cell surface. From an experiment using the inhibitor and trafficking mutation of Kir2.1, an increase in Kir2.1 was found to contribute to the secretion of the inflammatory cytokine, IL-1ß. Although the physiological significance of this acute IL-1ß secretion remains unclear, our present data imply that Kir2.1 translocation functions as a regulator of IL-1ß secretion, and therefore becomes a potential target to control cytokine release from microglia.


Asunto(s)
Lipopolisacáridos , Microglía , Citocinas/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Microglía/metabolismo , Canales de Potasio de Rectificación Interna
17.
BMC Res Notes ; 15(1): 120, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351190

RESUMEN

OBJECTIVES: Due to the increase of type 2 diabetes (T2D), the number of patients in treatment with multiple anti-diabetic agents is increased. According to the recent recommendation of treatment guidelines, sodium-glucose cotransporter 2 (SGLT2) inhibitors would be used as additional treatment to the currently administered anti-diabetic drugs for poorly controlled T2D patients. Here, we assessed the efficacy of SGLT2 inhibitors added to the current treatment with metformin, dipeptidyl peptidase-4 (DPP4) inhibitors, or both in Japanese T2D patients. RESULTS: Japanese T2D subjects with poor glucose control, who were treated with metformin (n = 10), DPP4 inhibitors (n = 11), or both (n = 28) and who were in need of additional treatment, were recruited. HbA1c levels before and 6 months after addition of SGLT2 inhibitor treatment were used to compare the effectiveness. The HbA1c levels after addition of SGLT2 inhibitors significantly decreased in all groups. The change in HbA1c levels (delta HbA1c) showed no significant difference between the three groups. The present data indicated that addition of SGLT2 inhibitors to metformin and/or DPP4 inhibitors is equally effective in the treatment of Japanese T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Humanos , Hipoglucemiantes/uso terapéutico , Japón , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
18.
Front Pharmacol ; 13: 1031906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588738

RESUMEN

Burn injury is the leading cause of death and disability worldwide and places a tremendous economic burden on society. Systemic inflammatory responses induced by thermal burn injury can cause muscle wasting, a severe involuntary loss of skeletal muscle that adversely affects the survival and functional outcomes of these patients. Currently, no pharmacological interventions are available for the treatment of thermal burn-induced skeletal muscle wasting. Elevated levels of inflammatory cytokines, such as interleukin-6 (IL-6), are important hallmarks of severe burn injury. The levels of signal transducer and activator of transcription 3 (STAT3)-a downstream component of IL-6 inflammatory signaling-are elevated with muscle wasting in various pro-catabolic conditions, and STAT3 has been implicated in the regulation of skeletal muscle atrophy. Here, we tested the effects of the STAT3-specific signaling inhibitor C188-9 on thermal burn injury-induced skeletal muscle wasting in vivo and on C2C12 myotube atrophy in vitro after the administration of plasma from burn model mice. In mice, thermal burn injury severity dependently increased IL-6 in the plasma and tibialis anterior muscles and activated the STAT3 (increased ratio of phospho-STAT3/STAT3) and ubiquitin-proteasome proteolytic pathways (increased Atrogin-1/MAFbx and MuRF1). These effects resulted in skeletal muscle atrophy and reduced grip strength. In murine C2C12 myotubes, plasma from burn mice activated the same inflammatory and proteolytic pathways, leading to myotube atrophy. In mice with burn injury, the intraperitoneal injection of C188-9 (50 mg/kg) reduced activation of the STAT3 and ubiquitin-proteasome proteolytic pathways, reversed skeletal muscle atrophy, and increased grip strength. Similarly, pretreatment of murine C2C12 myotubes with C188-9 (10 µM) reduced activation of the same inflammatory and proteolytic pathways, and ameliorated myotube atrophy induced by plasma taken from burn model mice. Collectively, these results indicate that pharmacological inhibition of STAT3 signaling may be a novel therapeutic strategy for thermal burn-induced skeletal muscle wasting.

19.
Sci Prog ; 104(3): 368504211039590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34559590

RESUMEN

The incidence of breast cancer increases annually, and it has become common within families of breast cancer patients. Interleukin-2 activates cytotoxic T lymphocytes, which are important for cancer immunity. To identify markers of increased familial breast cancer risk, soluble interleukin-2 receptor levels and immunologic factors were investigated in familial breast cancer and non-familial breast cancer patients. Of 106 untreated breast cancer patients in this study, 24 had familial breast cancer and 82 had non-familial breast cancer. The patients' soluble interleukin-2 receptor, interleukin-10, vascular endothelial growth factor, interleukin-17, regulatory T cell, myeloid-derived suppressor cell, white blood cell, and C-reactive protein levels, and their neutrophil-to-lymphocyte ratios were measured, and their prognoses were compared according to the soluble interleukin-2 receptor levels. Additionally, postoperative tissues from the patients with high soluble interleukin-2 receptor levels were stained with programmed cell death ligand 1 and cluster of differentiation 8. The soluble interleukin-2 receptor level in the familial breast cancer patients was significantly higher, and it showed significantly stronger correlations with the neutrophil-to-lymphocyte ratio and the interleukin-10, vascular endothelial growth factor, interleukin-17, regulatory T cell, myeloid-derived suppressor cell, white blood cell, and C-reactive protein levels, than in the non-familial breast cancer patients. The regulatory T cell and myeloid-derived suppressor cell levels were significantly higher in the patients with high soluble interleukin-2 receptor levels, and the overall survival and disease-free-survival rates were significantly worse for the familial breast cancer patients than for the non-familial breast cancer patients. Triple-negative breast cancer tissues from the familial breast cancer patients with high soluble interleukin-2 receptor levels stained well for programmed cell death ligand 1 and cluster of differentiation 8. Soluble interleukin-2 receptor levels can be used to predict the prognosis of familial breast cancer patients. Prospectively identifying patients who are less likely to have non-familial breast cancer is vital for improving their overall survival.


Asunto(s)
Interleucina-2 , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama , Proteína C-Reactiva , Humanos , Interleucina-17 , Ligandos , Pronóstico , Receptores de Interleucina-2 , Factor A de Crecimiento Endotelial Vascular
20.
Nutr Metab (Lond) ; 18(1): 58, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098999

RESUMEN

BACKGROUND: Feeding rhythm disruption contributes to the development of obesity. The receptors of glucagon-like peptide-1 (GLP-1) are distributed in the wide regions of the brain. Among these regions, GLP-1 receptors (GLP-1R) are expressed in the dorsomedial hypothalamic nucleus (DMH) which are known to be associated with thermogenesis and circadian rhythm development. However, the physiological roles of GLP-1R expressing neurons in the DMH remain elusive. METHODS: To examine the physiological role of GLP-1R expressing neurons in the DMH, saporin-conjugated exenatide4 was injected into rat brain DMH to delete GLP-1R-positive neurons. Subsequently, locomotor activity, diurnal feeding pattern, amount of food intake and body weight were measured. RESULTS: This deletion of GLP-1R-positive neurons in the DMH induced hyperphagia, the disruption of diurnal feeding pattern, and obesity. The deletion of GLP-1R expressing neurons also reduced glutamic acid decarboxylase 67 and cholecystokinin A receptor mRNA levels in the DMH. Also, it reduced the c-fos expression after refeeding in the suprachiasmatic nucleus (SCN). Thirty percent of DMH neurons projecting to the SCN expressed GLP-1R. Functionally, refeeding after fasting induced c-fos expression in the SCN projecting neurons in the DMH. As for the projection to the DMH, neurons in the nucleus tractus solitarius (NTS) were found to be projecting to the DMH, with 33% of those neurons being GLP-1-positive. Refeeding induced c-fos expression in the DMH projecting neurons in the NTS. CONCLUSION: These findings suggest that GLP-1R expressing neurons in the DMH may mediate feeding termination. In addition, this meal signal may be transmitted to SCN neurons and change the neural activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA