Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2314346121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315837

RESUMEN

Tobacco and alcohol are risk factors for human papillomavirus-negative head and neck squamous cell carcinoma (HPV- HNSCC), which arises from the mucosal epithelium of the upper aerodigestive tract. Notably, despite the mutagenic potential of smoking, HPV- HNSCC exhibits a low mutational load directly attributed to smoking, which implies an undefined role of smoking in HPV- HNSCC. Elevated YAP (Yes-associated protein) mRNA is prevalent in HPV- HNSCC, irrespective of the YAP gene amplification status, and the mechanism behind this upregulation remains elusive. Here, we report that oxidative stress, induced by major risk factors for HPV- HNSCC such as tobacco and alcohol, promotes YAP transcription via TM4SF19 (transmembrane 4 L six family member 19). TM4SF19 modulates YAP transcription by interacting with the GABP (Guanine and adenine-binding protein) transcription factor complex. Mechanistically, oxidative stress induces TM4SF19 dimerization and topology inversion in the endoplasmic reticulum membrane, which in turn protects the GABPß1 subunit from proteasomal degradation. Conversely, depletion of TM4SF19 impairs the survival, proliferation, and migration of HPV- HNSCC cells, highlighting the potential therapeutic relevance of targeting TM4SF19. Our findings reveal the roles of the key risk factors of HPV- HNSCC in tumor development via oxidative stress, offering implications for upcoming therapeutic approaches in HPV- HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/genética , Papillomaviridae , Infecciones por Papillomavirus/patología , Factores de Riesgo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
2.
Exp Mol Med ; 52(8): 1264-1274, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32859951

RESUMEN

The transcriptional cofactor YAP and its inhibitory regulators, Hippo kinases and adapter proteins, constitute an evolutionarily conserved signaling pathway that controls organ size and cell fate. The activity of the Hippo-YAP pathway is determined by a variety of intracellular and intercellular cues, such as cell polarity, junctions, density, mechanical stress, energy status, and growth factor signaling. Recent studies have demonstrated that YAP can induce the expression of a set of genes that allow cancer cells to gain a survival advantage and aggressive behavior. Comprehensive genomic studies have revealed frequent focal amplifications of the YAP locus in human carcinomas, including head and neck squamous cell carcinoma (HNSCC). Moreover, FAT1, which encodes an upstream component of Hippo signaling, is one of the most commonly altered genes in HNSCC. In this review, we discuss the causes and functional consequences of YAP dysregulation in HNSCC. We also address interactions between YAP and other oncogenic drivers of HNSCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Animales , Carcinogénesis/metabolismo , Neoplasias de Cabeza y Cuello/genética , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
3.
Proc Natl Acad Sci U S A ; 117(33): 19994-20003, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747557

RESUMEN

The transcriptional regulator YAP, which plays important roles in the development, regeneration, and tumorigenesis, is activated when released from inhibition by the Hippo kinase cascade. The regulatory mechanism of YAP in Hippo-low contexts is poorly understood. Here, we performed a genome-wide RNA interference screen to identify genes whose loss of function in a Hippo-null background affects YAP activity. We discovered that the coatomer protein complex I (COPI) is required for YAP nuclear enrichment and that COPI dependency of YAP confers an intrinsic vulnerability to COPI disruption in YAP-driven cancer cells. We identified MAP2K3 as a YAP regulator involved in inhibitory YAP phosphorylation induced by COPI subunit depletion. The endoplasmic reticulum stress response pathway activated by COPI malfunction appears to connect COPI and MAP2K3. In addition, we provide evidence that YAP inhibition by COPI disruption may contribute to transcriptional up-regulation of PTGS2 and proinflammatory cytokines. Our study offers a resource for investigating Hippo-independent YAP regulation as a therapeutic target for cancers and suggests a link between YAP and COPI-associated inflammatory diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Coat de Complejo I/metabolismo , MAP Quinasa Quinasa 3/metabolismo , Neoplasias/metabolismo , Interferencia de ARN , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular Tumoral , Proteína Coat de Complejo I/genética , Regulación Neoplásica de la Expresión Génica , Genoma , Vía de Señalización Hippo , Humanos , MAP Quinasa Quinasa 3/genética , Ratones , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
4.
Ann Neurol ; 86(1): 99-115, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004438

RESUMEN

OBJECTIVE: JBTS17 is a major gene mutated in ciliopathies such as Joubert syndrome and oral-facial-digital syndrome type VI. Most patients with loss of function mutations in JBTS17 exhibit cerebellar vermis hypoplasia and brainstem malformation. However, some patients with JBTS17 mutations show microcephaly and abnormal gyration. We examined potential roles of JBTS17 in neurogenesis to understand the pathological mechanism of JBTS17-related cortical abnormalities. METHODS: We examined subcellular localization and cell-cycle-dependent expression of JBTS17 proteins using anti-JBTS17 antibodies and JBTS17 expression vectors. We also performed knockdown experiments to determined roles of JBTS17 in human cells, and demonstrated mitotic functions of JBTS17 using immunostaining and live imaging. We examined the involvement of JBTS17 in cortical neurogenesis using a mouse in utero electroporation technique. RESULTS: We found that JBTS17 localizes to the kinetochore and the level of JBTS17 is regulated by cell-cycle-dependent proteolysis. Depletion of JBTS17 disrupts chromosome alignment and spindle pole orientation, resulting in mitotic delay. JBTS17 interacts with LIS1 and influences LIS1 localization. Depletion of Jbts17 in the developing mouse cortex interferes with the mitotic progression of neural progenitors and the migration of postmitotic neurons. INTERPRETATION: LIS1 is implicated in lissencephaly, but altered dosage of LIS1 has been also associated with microcephaly syndromes. Our results suggest that JBTS17 contributes to mitotic progression by interacting with LIS1, and abnormal mitosis is an underlying mechanism of the microcephaly phenotype in JBTS17-related ciliopathies. We propose that understanding extraciliary roles of ciliopathy proteins is important to elucidate pathological mechanisms underlying diverse ciliopathy phenotypes. ANN NEUROL 2019.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Ciliopatías/metabolismo , Proteínas de la Membrana/fisiología , Mitosis/fisiología , Neurogénesis/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/patología , Cilios/fisiología , Ciliopatías/patología , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA