Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34573914

RESUMEN

The purpose of this study was to determine whether convolutional neural networks (CNNs) can predict paresthesia of the inferior alveolar nerve using panoramic radiographic images before extraction of the mandibular third molar. The dataset consisted of a total of 300 preoperative panoramic radiographic images of patients who had planned mandibular third molar extraction. A total of 100 images taken of patients who had paresthesia after tooth extraction were classified as Group 1, and 200 images taken of patients without paresthesia were classified as Group 2. The dataset was randomly divided into a training and validation set (n = 150 [50%]), and a test set (n = 150 [50%]). CNNs of SSD300 and ResNet-18 were used for deep learning. The average accuracy, sensitivity, specificity, and area under the curve were 0.827, 0.84, 0.82, and 0.917, respectively. This study revealed that CNNs can assist in the prediction of paresthesia of the inferior alveolar nerve after third molar extraction using panoramic radiographic images.

2.
Dentomaxillofac Radiol ; 50(5): 20200513, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405976

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for predicting C-shaped canals in mandibular second molars on panoramic radiographs. METHODS: Panoramic and cone beam CT (CBCT) images obtained from June 2018 to May 2020 were screened and 1020 patients were selected. Our dataset of 2040 sound mandibular second molars comprised 887 C-shaped canals and 1153 non-C-shaped canals. To confirm the presence of a C-shaped canal, CBCT images were analyzed by a radiologist and set as the gold standard. A CNN-based deep-learning model for predicting C-shaped canals was built using Xception. The training and test sets were set to 80 to 20%, respectively. Diagnostic performance was evaluated using accuracy, sensitivity, specificity, and precision. Receiver-operating characteristics (ROC) curves were drawn, and the area under the curve (AUC) values were calculated. Further, gradient-weighted class activation maps (Grad-CAM) were generated to localize the anatomy that contributed to the predictions. RESULTS: The accuracy, sensitivity, specificity, and precision of the CNN model were 95.1, 92.7, 97.0, and 95.9%, respectively. Grad-CAM analysis showed that the CNN model mainly identified root canal shapes converging into the apex to predict the C-shaped canals, while the root furcation was predominantly used for predicting the non-C-shaped canals. CONCLUSIONS: The deep-learning system had significant accuracy in predicting C-shaped canals of mandibular second molars on panoramic radiographs.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada de Haz Cónico , Cavidad Pulpar/diagnóstico por imagen , Humanos , Mandíbula/diagnóstico por imagen , Diente Molar/diagnóstico por imagen , Radiografía Panorámica , Raíz del Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA