Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Photochem Photobiol B ; 259: 113007, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137702

RESUMEN

Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both in cellulo and in vivo. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.


Asunto(s)
Membrana Celular , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Animales , Humanos , Viscosidad , Ratones , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microscopía Fluorescente , Compuestos de Boro/química , Compuestos de Boro/farmacología , Porfirinas/química , Porfirinas/farmacología
2.
Elife ; 132024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197048

RESUMEN

Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients' colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients' tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.


Asunto(s)
Neoplasias Colorrectales , NADP , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Animales , Ratones , NADP/metabolismo , Línea Celular Tumoral , Imagen Óptica/métodos , Metabolismo Energético
3.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338976

RESUMEN

This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.


Asunto(s)
NAD , Fotoquimioterapia , Animales , Ratones , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/metabolismo , Oxígeno/metabolismo , Modelos Animales de Enfermedad , Fotoquimioterapia/métodos
4.
Methods Mol Biol ; 2755: 91-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319571

RESUMEN

The oxygen level in a tumor is a crucial factor for its development and response to therapies. Phosphorescence lifetime imaging (PLIM) with the use of phosphorescent oxygen probes is a highly sensitive, noninvasive optical technique for the assessment of molecular oxygen in living cells and tissues. Here, we present a protocol for microscopic mapping of oxygen distribution in a mouse tumor model in vivo. We demonstrate that PLIM microscopy, in combination with an Ir(III)-based probe, enables visualization of cellular-level heterogeneity of tumor oxygenation.


Asunto(s)
Neoplasias , Radiación , Animales , Ratones , Microscopía , Modelos Animales de Enfermedad , Neoplasias/diagnóstico por imagen , Oxígeno
5.
Cells ; 12(21)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37947661

RESUMEN

The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young's modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential.


Asunto(s)
Citoesqueleto de Actina , Humanos , Viscosidad , Microscopía de Fuerza Atómica/métodos , Células CACO-2 , Membrana Celular
6.
Opt Lett ; 48(20): 5309-5312, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831854

RESUMEN

We present a laser scanning system for macroscopic samples that records fully resolved decay curves in individual pixels, resolves the images in 16 wavelength channels, and records simultaneously at several laser wavelengths. By using confocal detection, the system delivers images that are virtually free of lateral scattering and out-of-focus haze. Image formats can be up to 256 × 256 pixels and up to 1024 time channels. We demonstrate the performance of the system both on model experiments with fluorescent micro-beads and on the tumor model in the living mice.

7.
Biosensors (Basel) ; 13(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37504079

RESUMEN

In this work, we obtained three new phosphorescent iridium complexes (Ir1-Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1-Ir3 emission maxima fell in the range of 630-650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied.


Asunto(s)
Neoplasias , Oxígeno , Humanos , Ligandos , Hipoxia , Agua
8.
Pharmaceuticals (Basel) ; 16(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37375743

RESUMEN

Personalized strategies in glioblastoma treatment are highly necessary. One of the possible approaches is drug screening using patient-derived tumor cells. However, this requires reliable methods for assessment of the response of tumor cells to treatment. Fluorescence lifetime imaging microscopy (FLIM) is a promising instrument to detect early cellular response to chemotherapy using the autofluorescence of metabolic cofactors. Here, we explored FLIM of NAD(P)H to evaluate the sensitivity of patient-derived glioma cells to temozolomide (TMZ) in vitro. Our results demonstrate that the more-responsive cell cultures displayed the longest mean fluorescence lifetime τm after TMZ treatment due to an increase in the protein-bound NAD(P)H fraction α2 associated with a shift to oxidative phosphorylation. The cell cultures that responded poorly to TMZ had generally shorter τm, i.e., were more glycolytic, and showed no or insignificant changes after treatment. The FLIM data correlate well with standard measurements of cellular drug response-cell viability and proliferation index and clinical response in patients. Therefore, FLIM of NAD(P)H provides a highly sensitive, label-free assay of treatment response directly on patient-derived glioblastoma cells and can become an innovative platform for individual drug screening for patients.

9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555468

RESUMEN

Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development.


Asunto(s)
NAD , Neoplasias , Animales , Ratones , NAD/metabolismo , NADP/metabolismo , Linfocitos T/metabolismo , Microscopía Fluorescente
10.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142177

RESUMEN

Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo. The sensor, derived from a polynorbornene and cyclometalated iridium(III) complex, exhibits the oxygen-dependent quenching of phosphorescence with a 40% longer lifetime in degassed compared to aerated solutions. In vitro, hypoxia resulted in a correlative increase in PIr3 phosphorescence lifetime and free (glycolytic) NAD(P)H fraction in cells. In vivo, mouse tumors demonstrated a high degree of cellular-level heterogeneity of both metabolic and oxygen states, and a lower dependence of metabolism on oxygen than cells in vitro. The small tumors were hypoxic, while the advanced tumors contained areas of normoxia and hypoxia, which was consistent with the pimonidazole assay and angiographic imaging. Dual FLIM/PLIM metabolic/oxygen imaging will be valuable in preclinical investigations into the effects of hypoxia on metabolic aspects of tumor progression and treatment response.


Asunto(s)
Iridio , Neoplasias , Animales , Hipoxia , Ratones , Microscopía Fluorescente , NAD , Neoplasias/diagnóstico por imagen , Oxígeno/metabolismo
12.
Sci Rep ; 12(1): 4476, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296739

RESUMEN

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) was applied to monitor simultaneously apoptosis using the genetically encoded sensor of caspase-3, mKate2-DEVD-iRFP, and the autofluorescence of redox cofactors in colorectal cancer cells upon stimulation of apoptosis with staurosporine, cisplatin or hydrogen peroxide. We found that, irrespective of the apoptotic stimulus used, ROS accumulation correlated well with both the elevated pool of mitochondrial, enzyme-bound NADH and caspase-3 activation. Meanwhile, a shift in the contribution of bound NADH could develop independently of the apoptosis, and this was observed in the case of cisplatin. An increase in the proportion of bound NADPH was detected only in staurosporine-treated cells, this likely being associated with a high level of ROS production and their resulting detoxification. The results of the study favor the discovery of new therapeutic strategies based on manipulation of the cellular redox balance, which could help improve the anti-tumor activity of drugs and overcome apoptotic resistance.


Asunto(s)
NAD , Neoplasias , Apoptosis , Caspasa 3/metabolismo , Cisplatino , Microscopía Fluorescente/métodos , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Estaurosporina/farmacología
13.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217616

RESUMEN

Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences. Fluorescence lifetime imaging (FLIM), which is an all-optical technique, is an emerging tool for sensing and quantifying cellular metabolism by measuring fluorescence decay parameters of endogenous fluorophores, such as NAD(P)H. To achieve accurate discrimination between metabolically diverse cellular subpopulations, appropriate approaches to FLIM data collection and analysis are needed. In this paper, the unique capability of FLIM to attain the overarching goal of discriminating metabolic heterogeneity is demonstrated. This has been achieved using an approach to data analysis based on the nonparametric analysis, which revealed a much better sensitivity to the presence of metabolically distinct subpopulations compared to more traditional approaches of FLIM measurements and analysis. The approach was further validated for imaging cultured cancer cells treated with chemotherapy. These results pave the way for accurate detection and quantification of cellular metabolic heterogeneity using FLIM, which will be valuable for assessing therapeutic vulnerabilities and predicting clinical outcomes.


Asunto(s)
Neoplasias/metabolismo , Imagen Óptica/métodos , Progresión de la Enfermedad , Humanos , Neoplasias/patología
14.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770757

RESUMEN

New water-soluble polynorbornenes P1-P4 containing oligoether, amino acid groups and luminophoric complexes of iridium(III) were synthesized by ring-opening metathesis polymerization. The polymeric products in organic solvents and in water demonstrate intense photoluminescence in the red spectral region. The polymers P1 and P3 with 1-phenylisoquinoline cyclometalating ligands in iridium fragments reveal 4-6 fold higher emission quantum yields in solutions than those of P2 and P4 that contain iridium complexes with 1-(thien-2-yl)isoquinoline cyclometalating ligands. The emission parameters of P1-P4 in degassed solutions essentially differ from those in the aerated solutions showing oxygen-dependent quenching of phosphorescence. Biological testing of P1 and P3 demonstrates that the polymers do not penetrate into live cultured cancer cells and normal skin fibroblasts and do not possess cytotoxicity within the concentrations and time ranges reasonable for biological studies. In vivo, the polymers display longer phosphorescence lifetimes in mouse tumors than in muscle, as measured using phosphorescence lifetime imaging (PLIM), which correlates with tumor hypoxia. Therefore, preliminary evaluation of the synthesized polymers shows their suitability for noninvasive in vivo assessments of oxygen levels in biological tissues.


Asunto(s)
Iridio/química , Luz , Sustancias Luminiscentes/química , Plásticos/química , Animales , Técnicas Biosensibles , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Humanos , Ratones , Estructura Molecular , Oxígeno/análisis , Procesos Fotoquímicos , Plásticos/síntesis química , Plásticos/farmacología , Polímeros/química , Análisis Espectral
15.
Biochim Biophys Acta Gen Subj ; 1865(12): 129978, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487824

RESUMEN

BACKGROUND: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS: 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS: We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS: Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE: Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.


Asunto(s)
Triazenos , Muerte Celular , Fármacos Fotosensibilizantes
16.
Molecules ; 26(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068190

RESUMEN

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C-benzothienyl-phenanthridine based cyclometalated ligand; N^N-pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters' solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological "window of transparency", NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0-2.3 µs under normoxia and 2.8-3.0 µs under hypoxia conditions) in complete agreement with the calibration curves obtained "in cuvette". The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


Asunto(s)
Materiales Biocompatibles/química , Iridio/química , Luminiscencia , Oxígeno/análisis , Animales , Células CHO , Cricetulus , Células HeLa , Humanos , Conformación Molecular , Espectroscopía de Protones por Resonancia Magnética , Fracciones Subcelulares/metabolismo
17.
Cell Mol Life Sci ; 78(7): 3467-3476, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33555392

RESUMEN

The phase of the cell cycle determines numerous aspects of cancer cell behaviour including invasiveness, ability to migrate and responsiveness to cytotoxic drugs. To non-invasively monitor progression of cell cycle in vivo, a family of genetically encoded fluorescent indicators, FUCCI (fluorescent ubiquitination-based cell cycle indicator), has been developed. Existing versions of FUCCI are based on fluorescent proteins of two or more different colors fused to cell-cycle-dependent degradation motifs. Thus, FUCCI-expressing cells emit light of different colors in different phases providing a robust way to monitor cell cycle progression by fluorescence microscopy and flow cytometry but limiting the possibility to simultaneously visualize other markers. To overcome this limitation, we developed a single-color variant of FUCCI, called FUCCI-Red, which utilizes two red fluorescent proteins with distinct fluorescence lifetimes, mCherry and mKate2. Similarly to FUCCI, these proteins carry cell cycle-dependent degradation motifs to resolve G1 and S/G2/M phases. We showed utility of FUCCI-Red by visualizing cell cycle progression of cancer cells in 2D and 3D cultures and monitoring development of tumors in vivo by confocal and fluorescence lifetime imaging microscopy (FLIM). Single-channel registration and red-shifted spectra make FUCCI-Red sensor a promising instrument for multiparameter in vivo imaging applications, which was demonstrated by simultaneous detection of cellular metabolic state using endogenous fluorescence in the blue range.


Asunto(s)
Ciclo Celular , Neoplasias del Colon/patología , Colorantes Fluorescentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Imagen Individual de Molécula/métodos , Animales , Proliferación Celular , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Fluorescente Roja
18.
J Biomed Opt ; 25(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33331150

RESUMEN

SIGNIFICANCE: Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM: The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH: FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS: We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS: These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.


Asunto(s)
Cisplatino , Neoplasias , Cisplatino/farmacología , Colorantes Fluorescentes , Microscopía Fluorescente , Orgánulos , Viscosidad
19.
Methods Appl Fluoresc ; 8(1): 014002, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31622964

RESUMEN

Exploring metabolism in human tumors at the cellular level remains a challenge. The reduced form of metabolic cofactor NAD(P)H is one of the major intrinsic fluorescent components in tissues and a valuable indicator of cellular metabolic activity. Fluorescence lifetime imaging (FLIM) enables resolution of both the free and protein-bound fractions of this cofactor, and thus, high sensitivity detection of relative changes in the NAD(P)H-dependent metabolic pathways in real time. However, the clinical use of this technique is still very limited. The applications of metabolic FLIM could be usefully expanded by probing cellular metabolism in tissues ex vivo. For this, however, the development of appropriate tissue preservation protocols is required in order to maintain the optical metabolic characteristics in the ex vivo sample in a state similar to those of the tumor in vivo. Using mouse tumor models of different histological types-colorectal cancer, lung carcinoma and melanoma-we tested eight different methods of tissue handling by comparing NAD(P)H fluorescence decay parameters ex vivo and in vivo as measured with two-photon excited FLIM microscopy. It was found that the samples placed in 10% BSA on ice immediately after excision maintained the same fluorescence lifetimes and free/bound ratios as measured in vivo for at least 3 hours. This protocol was subsequently used for metabolic assessments in fresh postoperative samples from colorectal cancer patients. A high degree of inter- and intra-tumor heterogeneity with a trend to a more oxidative metabolism was detected in T3 colorectal tumors in comparison with normal tumor-distant colon samples. These results suggest that the methodology developed on the basis of FLIM of NAD(P)H in tissues ex vivo show promise for interrogating the metabolic state of patients' tumors.


Asunto(s)
Fluorescencia , NAD/análisis , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Imagen Óptica , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factores de Tiempo , Células Tumorales Cultivadas
20.
Cytometry A ; 95(1): 47-55, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329217

RESUMEN

Although chemotherapy remains one of the main types of treatment for cancer, treatment failure is a frequent occurrence, emphasizing the need for new approaches to the early assessment of tumor response. The aim of this study was to search for indicators based on optical imaging of cellular metabolism and of collagen in tumors in vivo that enable evaluation of their response to chemotherapy. The study was performed on a mouse colorectal cancer model with the use of cisplatin, paclitaxel, and irinotecan. The metabolic activity of the tumor cells was assessed using fluorescence lifetime imaging of the metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H. Second harmonic generation (SHG) imaging was used to analyze the extent and properties of collagen within the tumors. We detected an early decrease in the free/bound NAD(P)H ratio in all treated tumors, indicating a shift toward a more oxidative metabolism. Monitoring of collagen showed an early increase in the amount of collagen followed by an increase in the extent of its orientation in tumors treated with cisplatin and paclitaxel, and decrease in collagen content in the case of irinotecan. Our study suggests that changes in cellular metabolism and fibrotic stroma organization precede morphological alterations and tumor size reduction, and that this indicates that NAD(P)H and collagen can be considered as intrinsic indicators of the response to treatment. This is the first time that these parameters have been investigated in tumors in vivo in the course of chemotherapy with drugs having different mechanisms of action. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Colágeno/metabolismo , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , NADP/metabolismo , Animales , Biomarcadores de Tumor/química , Línea Celular Tumoral , Cisplatino/uso terapéutico , Colágeno/química , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Femenino , Irinotecán/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Microscopía de Fluorescencia por Excitación Multifotónica , Paclitaxel/uso terapéutico , Microscopía de Generación del Segundo Armónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA