RESUMEN
This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 µmol m-2 s-1) and high (HL: 1135 µmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 µmol m-2 s-1 including 115 µmol m-2 s-1; HLFR: 1254 µmol m-2 s-1 + 140 µmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.
Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo A/genética , Fitocromo A/metabolismo , Fotosíntesis , HormonasRESUMEN
This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.
Asunto(s)
Luz , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/fisiología , Fitocromo B/metabolismo , Fitocromo B/genética , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo A/genéticaRESUMEN
Metals constitute vital elements for plant metabolism and survival, acting as essential co-factors in cellular processes which are indispensable for plant growth and survival. Excess or deficient provision of metal/metalloids puts plant's life and survival at risk, thus considered a potent stress for plants. Chloroplasts as an organelle with a high metal demand form a pivotal site within the metal homeostasis network. Therefore, the metal-mediated electron transport chain (ETC) in chloroplasts is a primary target site of metal/metalloid-induced stresses. Both excess and deficient availability of metal/metalloids threatens plant's photosynthesis in several ways. Energy demands from the photosynthetic carbon reactions should be in balance with energy output of ETC. Malfunctioning of ETC components as a result of metal/metalloid stress initiates photoinhiition. A feedback inhibition from carbon fixation process also impedes the ETC. Metal stress impairs antioxidant enzyme activity, pigment biosynthesis, and stomatal function. However, genetic manipulations, nutrient management, keeping photostasis, and application of phytohormones are among strategies for coping with metal stress. Consequently, a comprehensive understanding of the underlying mechanisms of metal/metalloid stress, as well as the exploration of potential strategies to mitigate its impact on plants are imperative. This review offers a mechanistic insight into the disruption of photosynthesis regulation by metal/metalloids and highlights adaptive approaches to ameliorate their effects on plants. Focus was made on photostasis, nutrient interactions, phytohormones, and genetic interventions for mitigating metal/metalloid stresses.
Asunto(s)
Metaloides , Reguladores del Crecimiento de las Plantas/metabolismo , Metales/metabolismo , Fotosíntesis , Plantas/genéticaRESUMEN
High light (HL) intensities have a significant impact on energy flux and distribution within photosynthetic apparatus. To understand the effect of high light intensity (HL) on the HL tolerance mechanisms in tomatoes, we examined the response of the photosynthesis apparatus of 12 tomato genotypes to HL. A reduced electron transfer per reaction center (ET0 /RC), an increased energy dissipation (DI0 /RC) and non-photochemical quenching (NPQ), along with a reduced maximum quantum yield of photosystem II (FV /FM ), and performance index per absorbed photon (PIABS ) were common HL-induced responses among genotypes; however, the magnitude of those responses was highly genotype-dependent. Tolerant and sensitive genotypes were distinguished based on chlorophyll fluorescence and energy-quenching responses to HL. Tolerant genotypes alleviated excess light through energy-dependent quenching (qE ), resulting in smaller photoinhibitory quenching (qI ) compared to sensitive genotypes. Quantum yield components also shifted under HL, favoring the quantum yield of NPQ (ÕNPQ ) and the quantum yield of basal energy loss (ÕN0 ), while reducing the efficient quantum yield of PSII (ÕPSII ). The impact of HL on tolerant genotypes was less pronounced. While the energy partitioning ratio did not differ significantly between sensitive and tolerant genotypes, the ratio of NPQ components, especially qI , affected plant resilience against HL. These findings provide insights into different patterns of HL-induced NPQ components in tolerant and sensitive genotypes, aiding the development of resilient crops for heterogeneous light conditions.
Asunto(s)
Clorofila , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Transporte de Electrón , Fluorescencia , Hojas de la Planta/metabolismoRESUMEN
High light (HL) is a common environmental stress directly imposes photoinhibition on the photosynthesis apparatus. Breeding plants for tolerance against HL is therefore highly demanded. Chlorophyll fluorescence (ChlF) is a sensitive indicator of stress in plants and can be evaluated using OJIP transients. In this study, we compared the ChlF features of plants exposed to HL (1200 µmol m-2 s-1) with that of control plants (300 µmol m-2 s-1). To extract the most reliable ChlF features for discrimination between HL-stressed and non-stressed plants, we applied three artificial neural network (ANN)-based algorithms, namely, Boruta, Support Vector Machine (SVM), and Recursive Feature Elimination (RFE). Feature selection algorithms identified multiple features but only two features, namely the maximal quantum yield of PSII photochemistry (FV/FM) and quantum yield of energy dissipation (ɸD0), remained consistent across all genotypes in control conditions, while exhibited variation in HL. Therefore, considered reliable features for HL stress screening. The selected features were then used for screening 14 tomato genotypes for HL. Genotypes were categorized into three groups, tolerant, semi-tolerant, and sensitive genotypes. Foliar hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were measured as independent proxies for benchmarking selected features. Tolerant genotypes were attributed with the lowest change in H2O2 and MDA contents, while the sensitive genotypes displayed the highest magnitude of increase in H2O2 and MDA by HL treatment compared to the control. Finally, a FV/FM higher than 0.77 and ɸD0 lower than 0.24 indicates a healthy electron transfer chain (ETC) when tomato plants are exposed to HL.
Asunto(s)
Clorofila , Solanum lycopersicum , Clorofila/química , Solanum lycopersicum/genética , Fluorescencia , Peróxido de Hidrógeno , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Fitomejoramiento , Fotosíntesis/genética , Genotipo , Algoritmos , Redes Neurales de la Computación , LuzRESUMEN
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
RESUMEN
In this study, we advance a robust methodology for identifying specific intelligence-related proteins across phyla. Our approach exploits a support vector machine-based classifier capable of predicting intelligence-related proteins based on a pool of meaningful protein features. For the sake of illustration of our proposed general method, we develop a novel computational two-layer predictor, Intell_Pred, to predict query sequences (proteins or transcripts) as intelligence-related or non-intelligence-related proteins or transcripts, subsequently classifying the former sequences into learning and memory-related classes. Based on a five-fold cross-validation and independent blind test, Intell_Pred obtained an average accuracy of 87.48 and 88.89, respectively. Our findings revealed that a score >0.75 (during prediction by Intell_Pred) is a well-grounded choice for predicting intelligence-related candidate proteins in most organisms across biological kingdoms. In particular, we assessed seismonastic movements and associate learning in plants and evaluated the proteins involved using Intell_Pred. Proteins related to seismonastic movement and associate learning showed high percentages of similarities with intelligence-related proteins. Our findings lead us to believe that Intell_Pred can help identify the intelligence-related proteins and their classes using a given protein/transcript sequence.
RESUMEN
Identifying environmental factors that improve plant growth and development under nitrogen (N) constraint is essential for sustainable greenhouse production. In the present study, the role of light intensity and N concentrations on the biomass partitioning and physiology of chrysanthemum was investigated. Four light intensities [75, 150, 300, and 600 µmol m-2 s-1 photosynthetic photon flux density (PPFD)] and three N concentrations (5, 10, and 15 mM N L-1) were used. Vegetative and generative growth traits were improved by increase in PPFD and N concentration. High N supply reduced stomatal size and gs in plants under lowest PPFD. Under low PPFD, the share of biomass allocated to leaves and stem was higher than that of flower and roots while in plants grown under high PPFD, the share of biomass allocated to flower and root outweighed that of allocated to leaves and stem. As well, positive effects of high PPFD on chlorophyll content, photosynthesis, water use efficiency (WUE), Nitrogen use efficiency (NUE) were observed in N-deficient plants. Furthermore, photosynthetic functionality improved by raise in PPFD. In conclusion, high PPFD reduced the adverse effects of N deficiency by improving photosynthesis and stomatal functionality, NUE, WUE, and directing biomass partitioning toward the floral organs.
Asunto(s)
Chrysanthemum , Nitrógeno , Nitrógeno/farmacología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Agua/farmacologíaRESUMEN
Plants deploy molecular, physiological, and anatomical adaptations to cope with long-term water-deficit exposure, and some of these processes are controlled by circadian clocks. Circadian clocks are endogenous timekeepers that autonomously modulate biological systems over the course of the day-night cycle. Plants' responses to water deficiency vary with the time of the day. Opening and closing of stomata, which control water loss from plants, have diurnal responses based on the humidity level in the rhizosphere and the air surrounding the leaves. Abscisic acid (ABA), the main phytohormone modulating the stomatal response to water availability, is regulated by circadian clocks. The molecular mechanism of the plant's circadian clock for regulating stress responses is composed not only of transcriptional but also posttranscriptional regulatory networks. Despite the importance of regulatory impact of circadian clock systems on ABA production and signaling, which is reflected in stomatal responses and as a consequence influences the drought tolerance response of the plants, the interrelationship between circadian clock, ABA homeostasis, and signaling and water-deficit responses has to date not been clearly described. In this review, we hypothesized that the circadian clock through ABA directs plants to modulate their responses and feedback mechanisms to ensure survival and to enhance their fitness under drought conditions. Different regulatory pathways and challenges in circadian-based rhythms and the possible adaptive advantage through them are also discussed.
Asunto(s)
Ácido Abscísico , Relojes Circadianos , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/fisiología , Plantas/metabolismo , Agua/metabolismoRESUMEN
GABA (gamma-aminobutyric acid) and melatonin are endogenous compounds that enhance plant responses to abiotic stresses. The response of Vicia faba to different stressors (salinity (NaCl), poly ethylene glycol (PEG), and sulfur dioxide (SO2)) was studied after priming with sole application of GABA and melatonin or their co-application (GABA + melatonin). Both melatonin and GABA and their co-application increased leaf area, number of flowers, shoot dry and fresh weight, and total biomass. Plants treated with GABA, melatonin, and GABA + melatonin developed larger stomata with wider aperture compared to the stomata of control plants. The functionality of the photosynthetic system was improved in primed plants. To investigate the photosynthetic functionality in details, the leaf samples of primed plants were exposed to different stressors, including SO2, PEG, and NaCl. The maximum quantum yield of photosystem II (PS II) was higher in the leaf samples of primed plants, while the non-photochemical quenching (NPQ) of primed plants was decreased when leaf samples were exposed to the stressors. Correlation analysis showed the association of initial PIabs with post-stress FV/FM and NPQ. Stressors attenuated the association of initial PIabs with both FV/FM and NPQ, while priming plants with GABA, melatonin, or GABA + melatonin minimized the effect of stressors by attenuating these correlations. In conclusion, priming plants with both GABA and melatonin improved growth and photosynthetic performance of Vicia faba and mitigated the effects of abiotic stressors on the photosynthetic performance.
Asunto(s)
Melatonina/farmacología , Fotosíntesis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Biomasa , Clorofila/metabolismo , Flores/efectos de los fármacos , Flores/fisiología , Presión Osmótica/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Cloruro de Sodio/farmacología , Dióxido de Azufre/toxicidad , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/fisiologíaRESUMEN
Light emitting diodes (LEDs) now enable precise light quality control. Prior to commercialisation however, the plant response to the resultant light quality regime ought to be addressed. The response was examined here in chrysanthemum by evaluating growth, chlorophyll fluorescence (before and following water deficit), as well as stomatal anatomy (density, size, pore dimensions and aperture heterogeneity) and closing ability. Plants were grown under blue (B), red (R), a mixture of R (70%) and B (RB), or white (W; 41% B, 39% intermediate spectrum, 20% R) light LEDs. Although R light promoted growth, it also caused leaf deformation (epinasty) and disturbed the photosynthetic electron transport system. The largest stomatal size was noted following growth under B light, whereas the smallest under R light. The largest stomatal density was observed under W light. Monochromatic R light stimulated both the rate and the degree of stomatal closure in response to desiccation compared with the other light regimes. We conclude that stomatal size is mainly controlled by the B spectrum, whereas a broader spectral range is important for determining stomatal density. Monochromatic R light enhanced stomatal ability to regulate water loss upon desiccation.
Asunto(s)
Chrysanthemum , Transporte de Electrón , Luz , Fotosíntesis , Hojas de la PlantaRESUMEN
In plants dehydration imposed by salinity can invoke physical changes at the interface of the plasma membrane and cell wall. Changes in hydrostatic pressure activate ion channels and cause depolarization of the plasma membrane due to disturbance in ion transport. During the initial phases of salinity stress, the relatively high osmotic potential of the rhizosphere enforces the plant to use a diverse spectrum of strategies to optimize water and nutrient uptake. Signals of salt stress are recognized by specific root receptors that activate an osmosensing network. Plant response to hyperosmotic tension is closely linked to the calcium (Ca2+) channels and interacting proteins such as calmodulin. A rapid rise in cytosolic Ca2+ levels occurs within seconds of exposure to salt stress. Plants employ multiple sensors and signaling components to sense and respond to salinity stress, of which most are closely related to Ca2+ sensing and signaling. Several tolerance strategies such as osmoprotectant accumulation, antioxidant boosting, polyaminses and nitric oxide (NO) machineries are also coordinated by Ca2+ signaling. Substantial research has been done to discover the salt stress pathway and tolerance mechanism in plants, resulting in new insights into the perception of salt stress and the downstream signaling that happens in response. Nevertheless, the role of multifunctional components such as Ca2+ has not been sufficiently addressed in the context of salt stress. In this review, we elaborate that the salt tolerance signaling pathway converges with Ca2+ signaling in diverse pathways. We summarize knowledge related to different dimensions of salt stress signaling pathways in the cell by emphasizing the administrative role of Ca2+ signaling on salt perception, signaling, gene expression, ion homeostasis and adaptive responses.