Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986938

RESUMEN

Overexpression of Glu-1Bx7 via allele 1Bx7OE significantly contributes to high dough strength in some wheat varieties and is useful for improving wheat quality. However, the proportion of wheat varieties containing Bx7OE is quite low. In this study, four cultivars containing 1Bx7OE were selected, and among the selected varieties, Chisholm (1Ax2*, 1Bx7OE + 1By8*, and 1Dx5 + 1Dx10) was crossed with Keumkang, a wheat variety that contains 1Bx7 (1Ax2*, 1Bx7 + 1By8, and 1Dx5 + 1Dx10). SDS-PAGE and UPLC analyses showed that the expression of the high-molecular-weight glutenin subunit (HMW-GS) 1Bx7 was significantly higher in NILs (1Ax2*, 1Bx7OE + 1By8*, and 1Dx5 + 1Dx10) compared with that in Keumkang. Wheat quality was analyzed with near infrared reflectance spectroscopy by measuring the protein content and SDS-sedimentation of NILs. The protein content of NILs (12.94%) was 21.65% higher than that of Chisholm (10.63%) and 4.54% higher than that of Keumkang (12.37%). In addition, the SDS-sedimentation value of NILs (44.29 mL) was 14.97% and 16.44% higher than that of Keumkang (38.52 mL) and Chisholm (38.03 mL), respectively. This study predicts that the quality of domestic wheat can be improved by crossbreeding with 1Bx7OE-containing cultivars.

2.
Plants (Basel) ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616313

RESUMEN

The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA