Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900585

RESUMEN

Molecular catalysts based on abundant elements that function in neutral water represent an essential component of sustainable hydrogen production. Artificial hydrogenases based on protein-inorganic hybrids have emerged as an intriguing class of catalysts for this purpose. We have prepared a novel artificial hydrogenase based on cobaloxime bound to a de novo three alpha-helical protein, α3C, via a pyridyl-based unnatural amino acid. The functionalized de novo protein was characterised by UV-visible, CD, and EPR spectroscopy, as well as MALDI spectrometry, which confirmed the presence and ligation of cobaloxime to the protein. The new de novo enzyme produced hydrogen under electrochemical, photochemical and reductive chemical conditions in neutral water solution. A change in hydrogen evolution capability of the de novo enzyme compared with native cobaloxime was observed, with turnover numbers around 80% of that of cobaloxime, and hydrogen evolution rates of 40% of that of cobaloxime. We discuss these findings in the context of existing literature, how our study contributes important information about the functionality of cobaloximes as hydrogen evolving catalysts in protein environments, and the feasibility of using de novo proteins for development into artificial metalloenzymes. Small de novo proteins as enzyme scaffolds have the potential to function as upscalable bioinspired catalysts thanks to their efficient atom economy, and the findings presented here show that these types of novel enzymes are a possible product.

2.
J Appl Crystallogr ; 57(Pt 2): 248-257, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596740

RESUMEN

NdGa hydride and deuteride phases were prepared from high-quality NdGa samples and their structures characterized by powder and single-crystal X-ray diffraction and neutron powder diffraction. NdGa with the orthorhombic CrB-type structure absorbs hydrogen at hydrogen pressures ≤ 1 bar until reaching the composition NdGaH(D)1.1, which maintains a CrB-type structure. At elevated hydrogen pressure additional hydrogen is absorbed and the maximum composition recovered under standard temperature and pressure conditions is NdGaH(D)1.6 with the Cmcm LaGaH1.66-type structure. This structure is a threefold superstructure with respect to the CrB-type structure. The hydrogen atoms are ordered and distributed on three fully occupied Wyckoff positions corresponding to tetrahedral (4c, 8g) and trigonal-bipyramidal (8g) voids in the parent structure. The threefold superstructure is maintained in the H-deficient phases NaGaH(D)x until 1.6 ≥ x ≥ 1.2. At lower H concentrations, coinciding with the composition of the hydride obtained from hydrogenation at atmospheric pressure, the unit cell of the CrB-type structure is resumed. This phase can also display H deficiency, NdGaH(D)y (1.1 ≥ y ≥ 0.9), with H(D) exclusively situated in partially empty tetrahedral voids. The phase boundary between the threefold superstructure (LaGaH1.66 type) and the onefold structure (NdGaH1.1 type) is estimated on the basis of phase-composition isotherms and neutron powder diffraction to be x = 1.15.

3.
Commun Chem ; 7(1): 59, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509134

RESUMEN

Plasmonic materials convert light into hot carriers and heat to mediate catalytic transformation. The participation of hot carriers (photocatalysis) remains a subject of vigorous debate, often argued on the basis that carriers have ultrashort lifetime incompatible with drive photochemical processes. This study utilises plasmon hot electrons directly in the photoelectrocatalytic reduction of CO2 to CO via a Ppasmonic nanohybrid. Through the deliberate construction of a plasmonic nanohybrid system comprising NiO/Au/ReI(phen-NH2)(CO)3Cl (phen-NH2 = 1,10-Phenanthrolin-5-amine) that is unstable above 580 K; it was possible to demonstrate hot electrons are the main culprit in CO2 reduction. The engagement of hot electrons in the catalytic process is derived from many approaches that cover the processes in real-time, from ultrafast charge generation and separation to catalysis occurring on the minute scale. Unbiased in situ FTIR spectroscopy confirmed the stepwise reduction of the catalytic system. This, coupled with the low thermal stability of the ReI(phen-NH2)(CO)3Cl complex, explicitly establishes plasmonic hot carriers as the primary contributors to the process. Therefore, mediating catalytic reactions by plasmon hot carriers is feasible and holds promise for further exploration. Plasmonic nanohybrid systems can leverage plasmon's unique photophysics and capabilities because they expedite the carrier's lifetime.

4.
Nat Commun ; 15(1): 445, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200016

RESUMEN

Plasmonic systems convert light into electrical charges and heat, mediating catalytic transformations. However, there is ongoing controversy regarding the involvement of hot carriers in the catalytic process. In this study, we demonstrate the direct utilisation of plasmon hot electrons in the hydrogen evolution reaction with visible light. We intentionally assemble a plasmonic nanohybrid system comprising NiO/Au/[Co(1,10-Phenanthrolin-5-amine)2(H2O)2], which is unstable at water thermolysis temperatures. This assembly limits the plasmon thermal contribution while ensuring that hot carriers are the primary contributors to the catalytic process. By combining photoelectrocatalysis with advanced in situ spectroscopies, we can substantiate a reaction mechanism in which plasmon-induced hot electrons play a crucial role. These plasmonic hot electrons are directed into phenanthroline ligands, facilitating the rapid, concerted proton-electron transfer steps essential for hydrogen generation. The catalytic response to light modulation aligns with the distinctive profile of a hot carrier-mediated process, featuring a positive, though non-essential, heat contribution.

5.
Inorg Chem ; 62(37): 14843-14851, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37676690

RESUMEN

The new ternary compounds La15Ni13Bi5 and La9Ni8Sn5 were obtained by arc melting under argon from appropriate amounts of the elements and subsequent annealing at 800 °C for 2 weeks. Single-crystal X-ray diffraction reveals that they represent two new structure types: La15Ni13Bi5 crystallizes in the hexagonal space group P62m [hP33, a = 14.995(3), c = 4.3421(10) Å, V = 845.5(4) Å3, Z = 1] and La9Ni8Sn5 in P63/m [hP88, a = 23.870(15), c = 4.433(3) Å, V = 2187(3) Å3, Z = 4]. The crystal structures of both compounds are characterized by hexagonal honeycomb-based motifs formed by Ni and Sn that extend along the c axis. The building motif with its three-blade wind turbine shape is reminiscent of the organic molecule triptycene and is unprecedented in extended solids. First-principles calculations have been performed in order to analyze the electronic structure and provide insight into chemical bonding. They reveal significant electron transfer from La to Ni and the respective p-element, which supports the formation of the polyanionic Ni-p-element network. DFT calculations suggest paramagnetic-like behavior for both compounds, which was confirmed by magnetic measurements.

6.
ACS Omega ; 8(33): 30727-30735, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636972

RESUMEN

The magnetic properties of TbMgNi4-xCox intermetallic compounds and selected hydrides and deuterides of this system have been studied by various techniques, including magnetic measurements, in situ X-ray and neutron powder diffraction. The intermetallic compounds crystallize in a SnMgCu4-type structure and magnetically order below a Curie temperature (TC), which increases exponentially with the Co content. This can be due to the ordering of the Co sublattice. On the other hand, the insertion of D or H in TbMgNiCo3 strongly decreases TC. The X-ray diffraction measurements versus temperature reveal cell volume minima at TC for the compounds with x = 1-3 without any hints of the structure change. The analysis of the neutron diffraction patterns for the intermetallics with x = 2 and 3 indicates a slightly canted ferrimagnetic structure below TC. The Tb moments refined at 16 K are 4.1(2) µB/Tb for x = 2, and 6.2(1) µB/Tb for x = 3, which are smaller than the free ion value (9.5 µB/Tb). This reduction can be due to the influence of temperature but also reveals the crystal field effect. As Ni and Co occupy statistically the same Wyckoff site, an average Ni/Co moment was refined, leading to 1.7(2) µB/atom for x = 2 and 1.8(1) µB/atom for x = 3 at 16 K. This moment is slightly canted compared to the Tb moment.

7.
Inorg Chem ; 62(27): 10736-10742, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364160

RESUMEN

A series of four homologous silicides have been discovered during systematic explorations in the central part of the La-Ni-Si system at 1000 °C. All compounds La12.5Ni28.0Si18.3 (n = 3; a = 28.8686(8), c = 4.0737(2) Å, Z = 3), La22.1Ni39.0Si27.8 (n = 4; a = 20.9340(6), c = 4.1245(2) Å, Z = 1), La32.9Ni49.8Si39.3 (n = 5; a = 24.946(1), c = 4.1471(5) Å, Z = 1), and La44.8Ni66.1Si53.4 (n = 6; a = 28.995(5), c = 4.158(1) Å, Z = 1) crystallize in the hexagonal space group P63/m and can be generalized according to Lan(n+1)+xNin(n+5)+ySi(n+1)(n+2)-z with n = 3-6. Their crystal structures are based on AlB2-type building blocks, fused La-centered Ni6Si6 hexagonal prisms, yielding larger oligomeric equilateral domains with the edge size equal to n. The domains extend along the c axis and show checkered ordering of the cationic and anionic parts, while all their atoms are located on mirror planes. Lan(n+1)+xNin(n+5)+ySi(n+1)(n+2)-z can be considered as a mirror series to the La-rich La(n+1)(n+2)Nin(n-1)+2Sin(n+1), where an exchange of the formal cationic and anionic sites, i.e., La and Si, occurs. The La-Ni-Si system is the first system where two such analogous series have been observed.

8.
Inorg Chem ; 61(44): 17673-17681, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270053

RESUMEN

The atomic and magnetic structures of Mn(Co,Ge)2 are reported herein. The system crystallizes in the space group P63/mmc as a superstructure of the MgZn2-type structure. The system exhibits two magnetic transitions with associated magnetic structures, a ferromagnetic (FM) structure around room temperature, and an incommensurate structure at lower temperatures. The FM structure, occurring between 193 and 329 K, is found to be a member of the magnetic space group P63/mm'c'. The incommensurate structure found below 193 K is helical with propagation vector k = (0 0 0.0483). Crystallographic results are corroborated by magnetic measurements and ab initio calculations.

9.
Sci Rep ; 11(1): 14453, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262064

RESUMEN

Alloys of Mn55Al45C2 with additions of VC nano-particles have been synthesized and their properties evaluated. The Mn55Al45C2(VC)x (x = 0.25, 0.5 and 1) alloys have been prepared by induction melting resulting in a high content of the ferromagnetic τ-phase (> 94 wt.%). Powder X-ray diffraction indicates that nano-VC can be dissolved in the alloy matrix up to 1 at.%. On the other side, metallography investigations by scanning electron microscopy and scanning transmission electron microscope show inclusions of the nanosized additives in the microstructure. The effect of nano-VC on the grain and twin boundaries has been studied by electron backscattering diffraction. The magnetization has been measured by magnetometry up to 9 T while the domain structure has been studied using both magnetic force microscopy as well as Kerr-microscopy. For nano-VC contents above 0.25 at.%, a clear increase of the coercive force is observed, from 57 to 71 kA/m. The optimum appears to be for 0.5 at.% nano-VC which shows a 25% increase in coercive force without losing any saturation magnetization. This independent increase in coercivity is believed to originate from the nano-VC reducing the overall magnetic domain size. Overall, we observe that addition of nano-VC could be an interesting route to increase the coercive force of MnAl, without sacrificing saturation magnetization.

10.
Acta Crystallogr C Struct Chem ; 77(Pt 4): 176-180, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33818439

RESUMEN

We report two new variants of the X-phase (orthorhombic, space group Pnnm) derived from the Mn-Co-Ge system. Two compositionally related crystals were investigated by means of single-crystal X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8 intermetallic compounds are part of the homogeneity region of the X-phase and adopt the Mn14(Mn0.11Co0.64Si0.25)23 structure type. The composition obtained from refinement of the XRD data is in agreement with the EDS results. In the present study, chemical disorder was only detected on the 8h positions. The ordering is compared with other members of the X-phase family and shows that the degree of disordering depends on the chemical composition. No completely ordered variants of the X-phase have yet been reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA