Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Neurol ; 14: 1168836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492851

RESUMEN

Background and purpose: As one common feature of cerebral small vascular disease (cSVD), white matter lesions (WMLs) could lead to reduction in brain function. Using a convenient, cheap, and non-intrusive method to detect WMLs could substantially benefit to patient management in the community screening, especially in the settings of availability or contraindication of magnetic resonance imaging (MRI). Therefore, this study aimed to develop a useful model to incorporate clinical laboratory data and retinal images using deep learning models to predict the severity of WMLs. Methods: Two hundred fifty-nine patients with any kind of neurological diseases were enrolled in our study. Demographic data, retinal images, MRI, and laboratory data were collected for the patients. The patients were assigned to the absent/mild and moderate-severe WMLs groups according to Fazekas scoring system. Retinal images were acquired by fundus photography. A ResNet deep learning framework was used to analyze the retinal images. A clinical-laboratory signature was generated from laboratory data. Two prediction models, a combined model including demographic data, the clinical-laboratory signature, and the retinal images and a clinical model including only demographic data and the clinical-laboratory signature, were developed to predict the severity of WMLs. Results: Approximately one-quarter of the patients (25.6%) had moderate-severe WMLs. The left and right retinal images predicted moderate-severe WMLs with area under the curves (AUCs) of 0.73 and 0.94. The clinical-laboratory signature predicted moderate-severe WMLs with an AUC of 0.73. The combined model showed good performance in predicting moderate-severe WMLs with an AUC of 0.95, while the clinical model predicted moderate-severe WMLs with an AUC of 0.78. Conclusion: Combined with retinal images from conventional fundus photography and clinical laboratory data are reliable and convenient approach to predict the severity of WMLs and are helpful for the management and follow-up of WMLs patients.

2.
Neuroradiology ; 65(7): 1155-1163, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37022485

RESUMEN

PURPOSE: Abnormal venous drainage may affect the prognosis of patients undergoing endovascular reperfusion therapy (ERT). Herein, time-resolved dynamic computed tomography arteriography (dCTA) was applied to evaluate the relationship between the velocity and extent of cortical venous filling (CVF), collateral status and outcomes. METHODS: Thirty-five consecutive patients with acute anterior circulation occlusion who underwent ERT within 24 h of onset and successfully recanalized were enrolled. All patients underwent dCTA before ERT. Slow first or end of CVF was considered to occur when the time point of CVF appearance or disappearance on the affected side occurred after than that on the healthy side, whereas an equal CVF, a CVF reduced by ≤ 50%, or by > 50% on the affected side, were considered good, intermediate, and poor CVF extent, respectively. RESULTS: Slow first CVF (29 patients, 82.8%), slow end of CVF (29, 85.7%), and intermediate extent of CVF (7, 20.0%) were not associated with collateral status or outcomes. Poor extent of CVF (6, 17.1%) was associated with poor collateral status, higher proportion of midline shift, larger final infarct volume, higher modified Rankin Scale (mRS) score at discharge, and higher proportion of in-hospital mortality. All patients with transtentorial herniation had poor extent of CVF, and those with poor CVF extent had an mRS score ≥ 3 at discharge. CONCLUSION: Poor CVF extent, as assessed by dCTA, is a more accurate and specific marker than slow CVF to identify patients at high risk for poor outcomes after ERT.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular , Humanos , Archivo , Resultado del Tratamiento , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/cirugía , Trombectomía/métodos , Procedimientos Endovasculares/métodos , Isquemia Encefálica/terapia , Circulación Colateral , Estudios Retrospectivos
3.
Methods Mol Biol ; 2613: 271-288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587085

RESUMEN

Glucosylceramide synthase can be targeted by high affinity small molecular weight inhibitors for the study of glycosphingolipid metabolism and function or for the treatment of glycosphingolipid storage disorders, including Gaucher and Fabry disease. This work is exemplified by the discovery and development of eliglustat tartrate, the first stand-alone small chemical entity approved for the treatment of Gaucher disease type 1. The development of inhibitors of glucosylceramide synthase that have utility for either research or clinical purposes begins with a testing funnel for screening candidate inhibitors for activity against this enzyme and for activity in lowering the content of glucosylceramide in intact cells. Two common assays for glucosylceramide synthase, one enzyme based and another cell based, are the focus of this chapter.


Asunto(s)
Enfermedad de Gaucher , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/metabolismo , Glucosiltransferasas/metabolismo , Glucosilceramidas , Glicoesfingolípidos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
4.
Bone Joint Res ; 11(10): 739-750, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36226477

RESUMEN

AIMS: To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. METHODS: In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle. RESULTS: The ACL tensile force in the intact knee was significantly affected with increasing PTS angle. Considerable differences were observed in kinematics and initial posterior femoral translation between the intact and ACLD joints as the PTS angles increased by more than 2.5° (beyond 11.4°). Additionally, a higher contact stress was detected in the peripheral posterior horn areas of the menisci with increasing PTS angle during the gait cycle. The maximum tensile force on the horn of the medial meniscus increased from 73.9 N to 172.4 N in the ACLD joint with increasing PTS angles. CONCLUSION: Knee joint instability and larger loading on the medial meniscus were found on the ACLD knee even at a 2.5° increase in PTS angle (larger than 11.4°). Our biomechanical findings support recent clinical evidence of a high risk of failure of ACL reconstruction with steeper PTS and the necessity of ACL reconstruction, which would prevent meniscus tear and thus the development or progression of osteoarthritis.Cite this article: Bone Joint Res 2022;11(10):708-719.

5.
Front Med (Lausanne) ; 9: 907066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911407

RESUMEN

There is a growing need for precise diagnosis and personalized treatment of disease in recent years. Providing treatment tailored to each patient and maximizing efficacy and efficiency are broad goals of the healthcare system. As an engineering concept that connects the physical entity and digital space, the digital twin (DT) entered our lives at the beginning of Industry 4.0. It is evaluated as a revolution in many industrial fields and has shown the potential to be widely used in the field of medicine. This technology can offer innovative solutions for precise diagnosis and personalized treatment processes. Although there are difficulties in data collection, data fusion, and accurate simulation at this stage, we speculated that the DT may have an increasing use in the future and will become a new platform for personal health management and healthcare services. We introduced the DT technology and discussed the advantages and limitations of its applications in the medical field. This article aims to provide a perspective that combining Big Data, the Internet of Things (IoT), and artificial intelligence (AI) technology; the DT will help establish high-resolution models of patients to achieve precise diagnosis and personalized treatment.

6.
J Orthop Translat ; 34: 22-41, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35615638

RESUMEN

Background: With increasing requirements for medical effects, and huge differences among individuals, traditional surgical instruments are difficult to meet the patients' growing medical demands. 3D printing is increasingly mature, which connects to medical services critically as well. The patient specific surgical guide plate provides the condition for precision medicine in orthopaedics. Methods: In this paper, a systematic review of the orthopedic guide template is presented, where the history of 3D-printing-guided technology, the process of guides, and basic clinical applications of orthopedic guide templates are described. Finally, the limitations of the template and possible future directions are discussed. Results: The technology of 3D printing surgical templates is increasingly mature, standard, and intelligent. With the help of guide templates, the surgeon can easily determine the direction and depth of the screw path, and choose the angle and range of osteotomy, increasing the precision, safety, and reliability of the procedure in various types of surgeries. It simplifies the difficult surgical steps and accelerates the growth of young and mid-career physicians. But some problems such as cost, materials, and equipment limit its development. Conclusions: In different fields of orthopedics, the use of guide templates can significantly improve surgical accuracy, shorten the surgical time, and reduce intraoperative bleeding and radiation. With the development of 3D printing, the guide template will be standardized and simplified from design to production and use. 3D printing guides will be further sublimated in the application of orthopedics and better serve the patients. The translational potential of this paper: Precision, intelligence, and individuation are the future development direction of orthopedics. It is more and more popular as the price of printers falls and materials are developed. In addition, the technology of meta-universe, digital twin, and artificial intelligence have made revolutionary effects on template guides. We aim to summarize recent developments and applications of 3D printing guide templates for engineers and surgeons to develop more accurate and efficient templates.

7.
Materials (Basel) ; 15(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35454571

RESUMEN

The proximal femur's numerical simulation could give an effective method for predicting the risk of femoral fracture. However, the majority of existing numerical simulations is static, which does not correctly capture the dynamic properties of bone fractures. On the basis of femoral fracture analysis, a dynamic simulation using incremental element deletion (IED)-based finite element analysis (FEA) was developed and compared to XFEM in this study. Mechanical tests were also used to assess it. Different impact speeds, fall postures, and cortical thicknesses were also studied for their implications on fracture types and mechanical responses. The time it took for the crack to shatter was shorter when the speed was higher, and the crack line slid down significantly. The fracture load fell by 27.37% when the angle was altered from 15° to 135°, indicating that falling forward was less likely to cause proximal femoral fracture than falling backward. Furthermore, the model with scant cortical bone was susceptible to fracture. This study established a theoretical foundation and mechanism for forecasting the risk of proximal femoral fracture in the elderly.

8.
Biomech Model Mechanobiol ; 21(4): 1145-1155, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35482145

RESUMEN

A better understanding of the time-dependent biomechanical behaviour of the biphasic hip articular cartilage (AC) under physiological loadings is important to understand the onset of joint pathology and guide the clinical treatment. Current computational studies for the biphasic hip AC were usually limited to short-term duration or using elaborate loading. The present study aimed to develop a multiscale computational modelling to investigate the long-term biphasic behaviour of the hip AC under physiological loadings over multiple gait cycles. Two-scale computational modelling including a musculoskeletal model and a finite element model of the natural hip was created. These two models were then combined and used to investigate the biphasic behaviour of hip AC over 80 gait cycles. The results showed that the interstitial fluid pressure in the AC supported over 89% of the loading during gait. When the contact area was located at the AC centre, the contact pressure and fluid pressure increased over time from the first cycle to the 80th cycle, while when the contact area approached the edge, these pressures decreased first dramatically and then slowly over time. The peak stresses and strains in the solid matrix of the AC remained at a low level and increased over time from the first cycle to the 80th cycle. This study demonstrated that the long-term temporal variations of the biphasic behaviour of hip AC under physiological loadings are significant. The methodology has potentially important implications in the biomechanical studies of human cartilage and supporting the development of cartilage substitution.


Asunto(s)
Cartílago Articular/fisiología , Marcha/fisiología , Articulación de la Cadera/fisiología , Modelos Biológicos , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos
9.
Comput Biol Med ; 141: 105023, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34772508

RESUMEN

BACKGROUND AND OBJECTIVE: The dynamic characteristics of the intact knee joint are valuable for treating knee osteoarthritis and designing knee prostheses. However, it remains a challenge to elucidate the detailed dynamics of the knee due to its complexity of anatomical structure and complex interaction with body dynamics. METHODS: In this study, a unique subject-specific musculoskeletal model with a concurrent high-accuracy intact finite element knee model was created and used to simultaneously evaluate the kinematics and mechanics of an intact knee joint during the gait cycle. RESULTS: A medial pivot motion with external rotation, and a large parallel anterior translation were observed in the stance and swing phases, respectively, which is consistent with the in vivo fluoroscopy measurements. The maximum axial contact force on the knee joint, observed at 45% of the gait cycle, is approximately 2.89 times the body weight. The medial cartilage bears 65.7% of the total axial contact force. The results demonstrate that the cartilage-cartilage contact bears most of the joint load (62.5%) compared to the cartilage-meniscus-cartilage contact (37.5%). Regarding contact mechanics, the maximum contact pressure on both sides of the tibial cartilage (8.2 MPa) is almost similar to the first axial loading peak (14%) of the gait cycle. Additionally, the maximum contact pressure (6.01 MPa) was observed during the stance phase of the gait cycle on the patellofemoral joint. CONCLUSIONS: The predicted results on the tibiofemoral and patellofemoral joints provide a theoretical basis for the treatment of knee joint diseases and knee prosthesis design. Moreover, this approach presents a comprehensive tool to evaluate the mechanics at both the body and tissue levels. Therefore, it has a high potential for application in human biomechanics.


Asunto(s)
Articulación de la Rodilla , Rodilla , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Marcha , Humanos
10.
Brain Sci ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36672011

RESUMEN

Many patients show poor outcomes following endovascular reperfusion therapy (ERT), and poor cortical venous outflow is a risk factor for these poor outcomes. We investigated the association between the outflow of the internal jugular vein (IJV) and baseline cortical venous outflow and the outcomes after ERT. We retrospectively enrolled 78 patients diagnosed with an acute anterior circulation stroke and successful ERT. Poor IJV outflow on the affected side was defined as stenosis ≥50% or occlusion of ipsilateral IJV, and poor outflow of bilateral IJVs was defined as stenosis ≥50% or occlusion of both IJVs. Poor cortical venous outflow was defined as a cortical vein opacification score (COVES) of 0 on admission. Multivariate analysis showed that poor outflow of IJV on the affected side was an independent predictor for hemorrhagic transformation. The poor outflow of bilateral IJVs was an independent risk factor for poor clinical outcomes. These patients also had numerical trends of a higher incidence of symptomatic intracranial hemorrhage, midline shift >10 mm, and in-hospital mortality; however, statistical significance was not observed. Additionally, poor IJV outflow was an independent determinant of poor cortical venous outflow. For acute large vessel occlusion patients, poor IJV outflow is associated with poor baseline cortical venous outflow and outcomes after successful ERT.

11.
J Mech Behav Biomed Mater ; 123: 104727, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492615

RESUMEN

Bone drilling is an indispensable and demanding operation among many orthopaedic operations. A dedicated drill bit that can achieve low-trauma and self-centring drilling is in urgent need. In this study, a three-step orthopaedic low-traumatic drill bit design was proposed. In order to evaluate the drilling performance of the proposed drill, comprehensive comparison tests were carried out with various commercial medical drills in terms of skiving force, thrust force, temperature rise, and surface quality. The experimental results show that the proposed three-step drill design with the optimal point angle, a small chisel edge, transition arc and web thinning can obtain lower and more stable thrust force, slighter bending force, smaller temperature rise, and higher hole quality compared with the commercial drill bits. The proposed drill shows satisfactory drilling performance and has great application potential in clinical surgery.


Asunto(s)
Procedimientos Ortopédicos , Ortopedia , Huesos , Fenómenos Mecánicos , Temperatura
12.
Ann Biomed Eng ; 49(9): 2491-2502, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142278

RESUMEN

An objective of total knee replacement (TKR) is to restore the mechanical function of a normal knee. Joint kinematics and contact mechanics performance are two of the primary indices that indicate the success of TKR devices. The aim of this study was to compare the kinematics and contact mechanics of TKR and normal knee joints. An experimentally evaluated finite-element (FE) knee model was developed and used to investigate the performance of four TKR designs (fixed cruciate-retaining (CR), mobile CR, posterior-stabilized (PS), medial pivot design (MP)) and the normal knee joint during a gait cycle. The predicted kinematic results showed that the MP design presented similar kinematics to those of the normal knee joint and did not demonstrate paradoxical motion of the femur. A considerably larger contact area and lower contact pressure were found on the normal knee joint (1315 mm2, and 14.8 MPa, respectively) than on the TKRs, which was consistent with the previous in-vivo fluoroscopic investigation. The mobile CR and PS designs exhibited the smallest and greatest contact pressures of the four TKR designs, respectively. The results of the present study help to understand the kinematics and contact mechanics in the TKR during the gait cycle, and provide comprehensive information about the performance of the normal knee joint.


Asunto(s)
Articulación de la Rodilla/fisiología , Prótesis de la Rodilla , Modelos Biológicos , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla , Fenómenos Biomecánicos , Femenino , Análisis de Elementos Finitos , Marcha/fisiología , Humanos , Masculino
13.
Comput Biol Med ; 132: 104311, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33721735

RESUMEN

BACKGROUND AND OBJECTIVE: A computational knee model facilitates efficient component design evaluations and preclinical testing under various dynamic loadings. However, the development of a highly mimicked dynamic whole knee model with specified ligament constraints that provides high predictive accuracy with in-vivo experiments remains a challenge. METHODS: In the present study, a musculoskeletal integrated force-driven explicit finite-element knee model with tibiofemoral and patellofemoral joints constrained with detailed soft tissue was developed. A proportional-integral-derivative controller was concurrently added to the knee model to track the boundary conditions. The actuations of the quadriceps and hamstrings were predicted via a subject-specific musculoskeletal model and matched with electromyography results. RESULTS: Compared to in-vivo fluoroscopic results in a gait cycle, the predicted results of the kinematics of the tibiofemoral joint exhibited an agreement in terms of tendency and magnitude (anterior-posterior translation: RMSE = 1.1 mm, r2 = 0.87; inferior-superior translation: RMSE = 0.83 mm, r2 = 0.84; medial-lateral translation: RMSE = 0.82 mm, r2 = 0.05; flexion-extension rotation: RMSE = 0.23°, r2 = 1; internal-external rotation: RMSE = 1.85°, r2 = 0.65; varus-valgus rotation: RMSE = 1.39°, r2 = 0.08). Contact mechanics, including the contact area, pressure, and stress, were synchronously simulated on the tibiofemoral and patellofemoral joints. CONCLUSIONS: The study provides a calibrated knee model and a kinematical validation approach that can be widely used in preclinical testing and knee prosthesis design.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Fenómenos Biomecánicos , Humanos , Rodilla , Articulación de la Rodilla , Rango del Movimiento Articular , Tibia
14.
Ann Biomed Eng ; 49(1): 322-333, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32607843

RESUMEN

A computational wear simulator is an efficient tool for evaluating the wear of artificial knee joints. The classical Archard's wear law-based simulator has questionable accuracy and is focused on walking. In this study, an in silico polyethylene wear simulation of total knee replacements was developed considering the various highly demanding daily activities. A good predicted accuracy (error = 8.1%) was found through comparison of the experimental results. A relatively larger averaged wear loss was found under the loading condition (1.53 mg/mc) of daily activities compared with the walking condition (1.32 mg/mc). The squatting movement (2.57 mg/mc) produces the highest overall wear rate. In addition, a relatively larger amount of wear was found on the medial side knee prosthesis than that on the lateral side. The enhanced in silico polyethylene wear simulator provides an accurate and comprehensive tool for wear prediction in preclinical wear testing.


Asunto(s)
Prótesis de la Rodilla , Modelos Biológicos , Movimiento/fisiología , Artroplastia de Reemplazo de Rodilla , Fenómenos Biomecánicos , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla , Ensayo de Materiales , Polietileno
15.
BMC Neurol ; 20(1): 413, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183248

RESUMEN

BACKGROUND: Contrast encephalopathy is a rare complication of carotid artery stenting (CAS). Contrast encephalopathy is a diagnosis of exclusion that often needs to be distinguished from high perfusion syndrome, cerebral haemorrhage, subarachnoid haemorrhage (SAH), cerebral infarction and so on. CASE PRESENTATION: In this study, we report on a 70-year-old man who was admitted to the hospital with transient ischaemic attacks presenting paroxysmal weakness of limbs in the previous 2 years. He had severe stenosis of the left internal carotid artery diagnosed by digital subtraction angiography (DSA) and underwent CAS. Two hours after the operation, the patient developed paralysis of the right upper limb, unclear speech, fever and restlessness. Emergency skull computed tomography (CT) showed swelling and a linear high-density area in the left cerebral hemisphere. To clarify the components of this high-density area in the traditional CT, the patient had spectral CT, which made the diagnosis of the leakage of contrast clear. After 1 week of supportive treatment, the patient improved. CONCLUSIONS: Spectral CT can easily distinguish the components of high-density areas on traditional CT, which is haemorrhage, calcification or iodine contrast leakage. Therefore, spectral CT is worth consideration for the differential diagnosis of complications of vascular intervention.


Asunto(s)
Encefalopatías , Arteria Carótida Interna/cirugía , Medios de Contraste/efectos adversos , Tomografía Computarizada por Rayos X , Anciano , Angiografía de Substracción Digital/efectos adversos , Encefalopatías/inducido químicamente , Encefalopatías/diagnóstico por imagen , Arteria Carótida Interna/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/cirugía , Humanos , Masculino
16.
ACS Chem Neurosci ; 11(20): 3464-3473, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33035424

RESUMEN

There remain no approved therapies for rare but devastating neuronopathic glyocosphingolipid storage diseases, such as Sandhoff, Tay-Sachs, and Gaucher disease type 3. We previously reported initial optimization of the scaffold of eliglustat, an approved therapy for the peripheral symptoms of Gaucher disease type 1, to afford 2, which effected modest reductions in brain glucosylceramide (GlcCer) in normal mice at 60 mg/kg. The relatively poor pharmacokinetic properties and high Pgp-mediated efflux of 2 prompted further optimization of the scaffold. With a general objective of reducing topological polar surface area, and guided by multiple metabolite identification studies, we were successful at identifying 17 (CCG-222628), which achieves remarkably greater brain exposure in mice than 2. After demonstrating an over 60-fold improvement in potency over 2 at reducing brain GlcCer in normal mice, we compared 17 with Sanofi clinical candidate venglustat (Genz-682452) in the CBE mouse model of Gaucher disease type 3. At doses of 10 mg/kg, 17 and venglustat effected comparable reductions in both brain GlcCer and glucosylsphingosine. Importantly, 17 achieved these equivalent pharmacodynamic effects at significantly lower brain exposure than venglustat.


Asunto(s)
Enfermedad de Gaucher , Animales , Inhibidores Enzimáticos/farmacología , Enfermedad de Gaucher/tratamiento farmacológico , Glucosiltransferasas , Ratones , Pirrolidinas/farmacología
17.
Med Eng Phys ; 83: 100-105, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32505661

RESUMEN

The heat generated during orthopedic surgery can cause thermal damage to bone cells, leading to cell necrosis, death, and bone resorption. In this study, the drill-exit surface in cortical bone drilling was firstly investigated by infrared thermography to understand the thermal characteristics of bone cutting. In order to mimic the short-term thermal condition of high temperature during surgical cutting, the osteoblasts were exposed to heat shock for short periods of time to investigate the effect of cutting heat on the bone. Necrosis and apoptosis were investigated immediately after heat shock for 2 s, 5 s, and 15 s at 50 °C, 60 °C, 70 °C, and 80 °C, respectively. The cells were then incubated for 4 days at 37 °C and analyzed by fluorescein annexin V-FITC/PI double staining. The temperature and heat-duration were precisely controlled by a novel heating approach. In comparison to the control group (37 °C), immediate necrotic and apoptotic response to heat shock was found in cells exposed to 50 °C for 5 s (11.8%, p<0.05); however, the response was negligible in cells exposed to 50 °C for 2 s. In addition, recovery was found in the group exposed to 50 °C and 60 °C for 2 s (p ≤ 0.05) after incubation for 4 days. Cell damage depends on the magnitude and duration of heat exposure. These findings provide fundamental knowledge for future developments of surgical tool design and cutting methods.


Asunto(s)
Procedimientos Ortopédicos , Termografía , Huesos , Calor , Humanos , Necrosis , Procedimientos Ortopédicos/efectos adversos , Osteocitos
18.
Eur Neurol ; 83(2): 121-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32544913

RESUMEN

BACKGROUND: Cerebral infarction caused by pituitary apoplexy (PA) is rare. To characterize the clinical features of cerebral infarction caused by PA, we performed a systematic review. SUMMARY: The clinical symptoms are mainly sudden headache, hemiplegia, visual impairment, disturbance of consciousness, and ophthalmalgia in patients with cerebral infarction caused by PA. Treatment for this type of infarction is different from treatment for general acute cerebral infarction. Compared to patients who underwent emergency surgery and conservative treatment, patients treated with delayed surgery showed a better prognosis and a lower mortality rate. Compared to patients who underwent craniotomy or conservative treatment, patients who underwent transsphenoidal surgery (TSS) not only improved well but also showed a lower mortality rate. Key Messages: PA rarely causes cerebral infarction, which is a critical condition with a poor prognosis and is more common in men. Delayed surgery and TSS appear to confer a better prognosis in patients with this condition.


Asunto(s)
Infarto Cerebral/etiología , Apoplejia Hipofisaria/complicaciones , Infarto Cerebral/terapia , Humanos , Persona de Mediana Edad
19.
Front Neurol ; 11: 268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373049

RESUMEN

Background and Purpose: The association of retinal microvascular abnormalities with the total cerebral small vessel disease (cSVD) burden found on brain MRI has not been determined. In the present study, we examined whether the retinopathy score could predict the total cSVD burden in ischemic stroke/transient ischemic attack (TIA) patients. A simple practical diagnostic tool may help identify candidates for MRI screening. Methods: We consecutively collected clinical data including retinal photography and cerebral MRI of ischemic stroke/TIA patients from August 2016 to August 2017 at our stroke center. The retinopathy score was assessed by the Keith-Wagener-Barker grading system for analyzing retinal microvascular abnormalities. To evaluate the total cSVD burden, the total cSVD score was assessed by awarding one point for the presence of each marker of cSVD on MRI. The clinical characteristics and retinopathy score were analyzed across patients for each total cSVD score. The association between the retinopathy score and the total cSVD score was analyzed. Results: Among the 263 enrolled patients, the frequency of hypertension in patients with a total cSVD score of 2, 3, or 4 was higher than that in patients with a score of 0 (69.5, 71.7, and 89.2% vs. 45.2% respectively, all P < 0.05). The retinopathy score was related to the total cSVD score (r = 0.687, P < 0.001). Adjusted multivariate ordinal regression showed that the retinopathy score was independently correlated with the total cSVD score (odds ratio [OR], 4.18; 95% confidence interval [CI], 3.07-5.70) after adjustment for age, history of hypertension, previous stroke/TIA and current smoking. The c statistics were 0.30 (95% CI, 0.24-0.37; P < 0.05), 0.46 (95% CI, 0.39-0.53; P = 0.303), 0.79 (95% CI, 0.72-0.86; P < 0.001), and 0.81 (95% CI, 0.74-0.88; P < 0.001) for predicting the total cSVD score of 1, 2, 3, and 4 respectively. Conclusions: These results suggest that retinal microvascular abnormalities have predictive value for severe total cSVD burden in ischemic stroke/TIA patients.

20.
J Mech Behav Biomed Mater ; 108: 103791, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32469716

RESUMEN

Bone cutting with high efficiency as well as low levels of forces and damage has a great significance for orthopaedic surgeries. Due to the brittleness and anisotropy of cortical bone, a conventional cutting process can cause irregular crack propagation and fractured bone chip, affecting the tissue removal process and postoperative recovery. In this paper, a high-frequency impact cutting method is investigated, and its effect on fracture propagation, chip formation and cutting forces is studied for orthogonal cutting. Experimental results show that cracks are deflected by cement lines in conventional cutting, forming fractured blocks or split chips. In impact cutting, the cutting-induced fractures expand along a main shear direction, generating small pieces of triangular segmented chips. Cutting forces are significantly reduced with vibration-induced impacts; especially, the main cutting force is nearly 70% lower than that in the conventional cutting. The main reason for this is much higher strain rates in high-frequency impact cutting than in a conventional process, and direct penetration of fractures across the osteonal matrix without deflections along the cement lines. This results in a straighter path along the main shear plane and totally different chip morphology; so, a lower consumption of cutting energy in the main shear direction reduces the macroscopic cutting force. The results of this study have an important theoretical and practical value for revealing the mechanism of impact cutting, improving the efficiency of osteotomy and supporting the innovation in bone surgical instruments.


Asunto(s)
Hueso Cortical , Fracturas Óseas , Huesos , Fracturas Óseas/cirugía , Osteón , Humanos , Fenómenos Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA