Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BioDrugs ; 37(3): 375-395, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37014547

RESUMEN

BACKGROUND: Mucopolysaccharidosis type II is a severe lysosomal storage disease caused by deficient activity of the enzyme iduronate-2-sulfatase. The only medicinal product approved by the US Food and Drug Administration for enzyme replacement therapy, recombinant iduronate-2-sulfatase (idursulfase, Elaprase®), is a large molecule that is not able to cross the blood-brain barrier and neutralize progressive damage of the central nervous system caused by the accumulation of glycosaminoglycans. Novel chimeric protein HIR-Fab-IDS is an anti-human insulin receptor Fab fragment fused to recombinant modified iduronate-2-sulfatase. This modification provides a highly selective interaction with the human insulin receptor, which leads to the HIR-Fab-IDS crossing the blood-brain barrier owing to internalization of the hybrid molecule by transcytosis into endothelial cells adjacent to the nervous system by the principle of a 'molecular Trojan horse'. OBJECTIVES: In this work, the physicochemical and biological characterization of a blood-brain barrier-penetrating fusion protein, HIR-Fab-IDS, is carried out. HIR-Fab-IDS consists of an anti-human insulin receptor Fab fragment fused to recombinant iduronate-2-sulfatase. METHODS: Comprehensive analytical characterization utilizing modern techniques (including surface plasmon resonance and mass spectrometry) was performed using preclinical and clinical batches of HIR-Fab-IDS. Critical quality parameters that determine the therapeutic effect of iduronate-2-sulfatase, as well as IDS enzymatic activity and in vitro cell uptake activity were evaluated in comparison with the marketed IDS product Elaprase® (IDS RP). In vivo efficiency of HIR-Fab-IDS in reversing mucopolysaccharidosis type II pathology in IDS-deficient mice was also investigated. The affinity of the chimeric molecule for the INSR was also determined by both an enzyme-linked immunosorbent assay and surface plasmon resonance. We also compared the distribution of 125I-radiolabeled HIR-Fab-IDS and IDS RP in the tissues and brain of cynomolgus monkeys after intravenous administration. RESULTS: The HIR-Fab-IDS primary structure investigation showed no significant post-translational modifications that could affect IDS activity, except for the formylglycine content, which was significantly higher for HIR-Fab-IDS compared with that for IDS RP (~ 76.5 vs ~ 67.7%). Because of this fact, the specific enzyme activity of HIR-Fab-IDS was slightly higher than that of IDS RP (~ 2.73 × 106 U/µmol vs ~ 2.16 × 106 U/µmol). However, differences were found in the glycosylation patterns of the compared IDS products, causing a minor reduced in vitro cellular uptake of HIR-Fab-IDS by mucopolysaccharidosis type II fibroblasts compared with IDS RP (half-maximal effective concentration ~ 26.0 vs ~ 23.0 nM). The efficacy of HIR-Fab-IDS in IDS-deficient mice has demonstrated a statistically significant reduction in the level of glycosaminoglycans in the urine and tissues of the main organs to the level of healthy animals. The HIR-Fab-IDS has revealed high in vitro affinity for human and monkey insulin receptors, and the radioactively labeled product has been shown to penetrate to all parts of the brain and peripheral tissues after intravenous administration to cynomolgus monkeys. CONCLUSIONS: These findings indicate that HIR-Fab-IDS, a novel iduronate-2-sulfatase fusion protein, is a promising candidate for the treatment of central nervous system manifestations in neurological mucopolysaccharidosis type II.


Asunto(s)
Mucopolisacaridosis II , Estados Unidos , Humanos , Animales , Ratones , Mucopolisacaridosis II/tratamiento farmacológico , Receptor de Insulina , Ácido Idurónico , Macaca fascicularis/metabolismo , Células Endoteliales/metabolismo , Proteínas Recombinantes/uso terapéutico , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/uso terapéutico
2.
J Pharm Biomed Anal ; 220: 115004, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-35988306

RESUMEN

A recombinant humanized monoclonal antibody (mAb) Eculizumab, C5-complement cascade inhibitor, is an important treatment of complement-based diseases recommended by international guidelines. Elizaria® Drug Product (DP), developed by IBC Generium, Russia, is the world's first registered biosimilar of eculizumab (Soliris®, Alexion Pharmaceuticals). Using sensitive state-of-the-art analytical techniques extensive similarity assessment has been conducted to demonstrate the structural and functional similarity of original Soliris® (Eculizumab Reference Product, RP) and the biosimilar Elizaria®, focusing on the physicochemical and biological quality attributes, including those known to affect the mechanisms of action. A multitude of analyses revealed that amino acid sequence is identical, the higher order structures, post-translational modifications, purity, and product variants are highly similar between Elizaria® DP and Eculizumab RP, except for minor differences in the relative abundance of the charge variants and glycan moieties considered not clinically significant. The results demonstrate that Elizaria® is highly analytically similar to Eculizumab RP in terms of physicochemical properties and biological activities.


Asunto(s)
Biosimilares Farmacéuticos , Hemoglobinuria Paroxística , Anticuerpos Monoclonales Humanizados/uso terapéutico , Biosimilares Farmacéuticos/química , Inactivadores del Complemento , Hemoglobinuria Paroxística/tratamiento farmacológico , Humanos , Preparaciones Farmacéuticas
3.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832963

RESUMEN

The disfunction or deficiency of the C1 esterase inhibitor (C1INH) is associated with hereditary or acquired angioedema (HAE/AAE), a rare life-threatening condition characterized by swelling in the skin, respiratory and gastrointestinal tracts. The current treatment options may carry the risks of either viral infection (plasma-derived Berinert®) or immune reaction (human recombinant C1INH from rabbit milk, Ruconest®). This study describes the physicochemical and biological characterization of a novel recombinant human C1 esterase inhibitor (rhC1INH) from Chinese hamster ovary (CHO) cells for the treatment of hereditary angioedema compared to the marketed products Berinert® and Ruconest®. The mass spectrometry results of total deglycosylated rhC1INH revealed a protein with a molecular mass of 52,846 Da. Almost full sequence coverage (98.6%) by nanoLC-MS/MS peptide mapping was achieved. The purity and C1s inhibitory activity of rhC1INH from CHO cells are comparable with Ruconest®, although we found differences in charge isoforms distribution, intact mass values, and N-glycans profile. Comparison of the specific activity (IC50 value) of the rhC1INH with human C1 esterase inhibitor from blood serum showed similar inhibitory properties. These data allow us to conclude that the novel rhC1INH molecule could become a potential therapeutic option for patients with HAE/AAE.

4.
BMC Biotechnol ; 16(1): 43, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27189173

RESUMEN

BACKGROUND: In a previous study we found that in chickweed the expression level of the pro-SmAMP2 gene was comparable or even higher to that of the ß-actin gene. This high level of the gene expression has attracted our attention as an opportunity for the identification of novel strong promoters of plant origin, which could find its application in plant biotechnology. Therefore, in the present study we focused on the nucleotide sequence identification and the functional characteristics of the pro-SmAMP2 promoter in transgenic plants. RESULTS: In chickweed (Stellaria media), a 2120 bp promoter region of the pro-SmAMP2 gene encoding antifungal peptides was sequenced. Six 5'-deletion variants -2120, -1504, -1149, -822, -455, and -290 bp of pro-SmAMP2 gene promoter were fused with the coding region of the reporter gene gusA in the plant expression vector pCambia1381Z. Independent transgenic plants of tobacco Nicotiana tabacum were obtained with each genetic structure. GUS protein activity assay in extracts from transgenic plants showed that all deletion variants of the promoter, except -290 bp, expressed the gusA gene. In most transgenic plants, the GUS activity level was comparable or higher than in plants with the viral promoter CaMV 35S. GUS activity remains high in progenies and its level correlates positively with the amount of gusA gene mRNA in T3 homozygous plants. The activity of the рro-SmAMP2 promoter was detected in all organs of the transgenic plants studied, during meiosis and in pollen as well. CONCLUSION: Our results show that the рro-SmAMP2 promoter can be used for target genes expression control in transgenic plants.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Stellaria/genética , Secuencia de Bases , Datos de Secuencia Molecular
5.
Transgenic Res ; 21(2): 313-25, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21706181

RESUMEN

Two novel antifungal hevein-like peptides, SmAMP1.1a and SmAMP2.2a, were previously isolated from seeds of Stellaria media. It has been established that these peptides accumulate in this weed as a result of proteolysis of two propeptides, pro-SmAMP1 and pro-SmAMP2. The primary structure of these propeptides is unique; in addition to having a signal peptide and negatively charged C-terminus, each of these structures consists of two hevein-like peptides of different length separated by a space rather than a single peptide. In this work, we demonstrated that the expression of the pro-SmAMP1 and pro-SmAMP2 genes was tissue-specific and increased substantially under exposure to fungal infection. To elucidate whether S. media has any advantages in defending against phytopathogens due to its unusual structure of pro-SmAMP1 and pro-SmAMP2, on the basis of the pro-SmAMP1 gene, we created three genetic constructs. Arabidopsis and tobacco plants were subsequently transformed with these constructs. Transgenic plants bearing the full-length pro-SmAMP1 gene exhibited the best resistance to the phytopathogens Bipolaris sorokiniana and Thielaviopsis basicola. The resistance of S. media plants to phytopathogenic fungi was likely due to the fungal-inducible expression of pro-SmAMP1 and pro-SmAMP2 genes, and due to the specific features of the primary structure of the corresponding propeptides. As a result of the processing of these propeptides, two different antimicrobial peptides were released simultaneously. Based on our results, we conclude that the genes for antimicrobial peptides from S. media may be promising genetic tools for the improvement of plant resistance to fungal diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Arabidopsis/inmunología , Ascomicetos/patogenicidad , Resistencia a la Enfermedad , Nicotiana/inmunología , Lectinas de Plantas/inmunología , Stellaria/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Péptidos Catiónicos Antimicrobianos/genética , Arabidopsis/genética , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Lectinas de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Nicotiana/genética , Nicotiana/microbiología , Transcripción Genética , Transformación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA