Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Theor Appl Genet ; 137(6): 136, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764078

RESUMEN

KEY MESSAGE: Different kinship and resistance to cotton leaf curl disease (CLCuD) and heat were found between upland cotton cultivars from China and Pakistan. 175 SNPs and 82 InDels loci related to yield, fiber quality, CLCuD, and heat resistance were identified. Elite alleles found in Pakistani accessions aided local adaptation to climatic condition of two countries. Adaptation of upland cotton (Gossypium hirsutum) beyond its center of origin is expected to be driven by tailoring of the genome and genes to enhance yield and quality in new ecological niches. Here, resequencing of 456 upland cotton accessions revealed two distinct kinships according to the associated country. Fiber quality and lint percentage were consistent across kinships, but resistance to cotton leaf curl disease (CLCuD) and heat was distinctly exhibited by accessions from Pakistan, illustrating highly local adaption. A total of 175 SNP and 82 InDel loci related to yield, fiber quality, CLCuD and heat resistance were identified; among them, only two overlapped between Pakistani and Chinese accessions underscoring the divergent domestication and improvement targets in each country. Loci associated with resistance alleles to leaf curl disease and high temperature were largely found in Pakistani accessions to counter these stresses prevalent in Pakistan. These results revealed that breeding activities led to the accumulation of unique alleles and helped upland cotton become adapted to the respective climatic conditions, which will contribute to elucidating the genetic mechanisms that underlie resilience traits and help develop climate-resilient cotton cultivars for use worldwide.


Asunto(s)
Gossypium , Polimorfismo de Nucleótido Simple , Gossypium/genética , Pakistán , China , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Mutación INDEL , Adaptación Fisiológica/genética , Genoma de Planta , Alelos , Fitomejoramiento , Fibra de Algodón , Fenotipo
2.
Plant Commun ; : 100938, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689494

RESUMEN

Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.

3.
Adv Sci (Weinh) ; : e2402816, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666376

RESUMEN

Leaf shape is considered to be one of the most significant agronomic traits in crop breeding. However, the molecular basis underlying leaf morphogenesis in cotton is still largely unknown. In this study, through genetic mapping and molecular investigation using a natural cotton mutant cu with leaves curling upward, the causal gene GHCU is successfully identified as the key regulator of leaf flattening. Knockout of GHCU or its homolog in cotton and tobacco using CRISPR results in abnormal leaf shape. It is further discovered that GHCU facilitates the transport of the HD protein KNOTTED1-like (KNGH1) from the adaxial to the abaxial domain. Loss of GHCU function restricts KNGH1 to the adaxial epidermal region, leading to lower auxin response levels in the adaxial boundary compared to the abaxial. This spatial asymmetry in auxin distribution produces the upward-curled leaf phenotype of the cu mutant. By analysis of single-cell RNA sequencing and spatiotemporal transcriptomic data, auxin biosynthesis genes are confirmed to be expressed asymmetrically in the adaxial-abaxial epidermal cells. Overall, these findings suggest that GHCU plays a crucial role in the regulation of leaf flattening through facilitating cell-to-cell trafficking of KNGH1 and hence influencing the auxin response level.

4.
J Adv Res ; 56: 15-29, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36966917

RESUMEN

INTRODUCTION: Allotetraploid upland cotton (Gossypium hirsutum L.) is native to the Mesoamerican and Caribbean regions, had been improved in the southern United States by the mid-eighteenth century, was then dispersed worldwide. However, a Hainan Island Native Cotton (HIC) has long been grown extensively on Hainan Island, China. OBJECTIVES: Explore HIC's evolutionary relationship and genomic diversity with other tetraploid cottons, its origin and whether it was used for YAZHOUBU (Yazhou cloth, World Intangible Cultural Heritage) weaving, and the role of structural variations (SVs) in upland cotton domestication. METHODS: We assembled a high-quality genome of one HIC plant. We performed phylogenetic analysis, divergence time estimation, principal component analysis and population differentiation estimation using cotton assemblies and/or resequencing data. SVs were detected by whole-genome comparison. A F2 population was used for linkage analysis and to study effects of SVs. Buoyancy and salt water tolerance tests for seeds were conducted. RESULTS: We found that the HIC belongs to G. purpurascens. G. purpurascens is best classified as a primitive race of G. hirsutum. The potential for long range transoceanic dispersal of G. purpurascens seeds was proved. A set of SVs, selective sweep regions between G. hirsutum races and cultivars, and quantitative trait loci (QTLs) of eleven agronomic traits were obtained. SVs, especially large-scale SVs, were found to have important effects on cotton domestication and improvement. Of them, eight large-scale inversions strongly associated with yield and fiber quality have probably undergone artificial selection in domestication. CONCLUSION: G. purpurascens including HIC is a primitive race of G. hirsutum, probably disperse to Hainan from Central America by floating on ocean currents, may have been partly domesticated, planted and was likely used for YAZHOUBU weaving in Hainan much earlier than the Pre-Columbian period. SV plays an important role in cotton domestication and improvement.


Asunto(s)
Domesticación , Gossypium , Gossypium/genética , Filogenia , Genoma de Planta/genética , Sitios de Carácter Cuantitativo
5.
Plant J ; 116(2): 389-403, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37403589

RESUMEN

Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.


Asunto(s)
Gossypium , Tricomas , Gossypium/genética , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epidermis de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
6.
Mol Plant ; 16(4): 662-677, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738104

RESUMEN

The excellent Upland cotton (Gossypium hirsutum) cultivars developed since 1949 have made a huge contribution to cotton production in China, the world's largest producer and consumer of cotton. However, the genetic and genomic basis for the improvements of these cotton cultivars remains largely unclear. In this study, we selected 16 Upland cotton cultivars with important historical status in Chinese cotton breeding and constructed a multiparent, advanced generation, intercross (MAGIC) population comprising 920 recombinant inbred lines. A genome-wide association study using the MAGIC population identified 54 genomic loci associated with lint yield and fiber quality. Of them, 25 (46.30%) pleiotropic genomic loci cause simultaneous changes of lint yield and/or fiber quality traits, revealing complex trade-offs and linkage drags in Upland cotton agronomic traits. Deep sequencing data of 11 introduced ancestor cultivars and publicly available resequencing datasets of 839 cultivars developed in China during the past 70 years were integrated to explore the historical distribution and origin of the elite or selected alleles. Interestingly, 85% of these elite alleles were selected and fixed from different American ancestors, consistent with cotton breeding practices in China. However, seven elite alleles of native origin that are responsible for Fusarium wilt resistance, early maturing, good-quality fiber, and other characteristics were not found in American ancestors but have greatly contributed to Chinese cotton breeding and wide cultivation. Taken together, these results provide a genetic basis for further improving cotton cultivars and reveal that the genetic composition of Chinese cotton cultivars is narrow and mainly derived from early introduced American varieties.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica
8.
Mol Plant ; 16(4): 678-693, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36760124

RESUMEN

Structural variations (SVs) have long been described as being involved in the origin, adaption, and domestication of species. However, the underlying genetic and genomic mechanisms are poorly understood. Here, we report a high-quality genome assembly of Gossypium barbadense acc. Tanguis, a landrace that is closely related to formation of extra-long-staple (ELS) cultivated cotton. An SV-based pan-genome (Pan-SV) was then constructed using a total of 182 593 non-redundant SVs, including 2236 inversions, 97 398 insertions, and 82 959 deletions from 11 assembled genomes of allopolyploid cotton. The utility of this Pan-SV was then demonstrated through population structure analysis and genome-wide association studies (GWASs). Using segregation mapping populations produced through crossing ELS cotton and the landrace along with an SV-based GWAS, certain SVs responsible for speciation, domestication, and improvement in tetraploid cottons were identified. Importantly, some of the SVs presently identified as associated with the yield and fiber quality improvement had not been identified in previous SNP-based GWAS. In particular, a 9-bp insertion or deletion was found to associate with elimination of the interspecific reproductive isolation between Gossypium hirsutum and G. barbadense. Collectively, this study provides new insights into genome-wide, gene-scale SVs linked to important agronomic traits in a major crop species and highlights the importance of SVs during the speciation, domestication, and improvement of cultivated crop species.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/genética , Genoma de Planta/genética , Fenotipo , Tetraploidía
9.
Theor Appl Genet ; 136(1): 2, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36648515

RESUMEN

KEY MESSAGE: The duplicated male sterile genes ms5m6 in cotton were map-based cloned and validated by the virus-induced gene silencing assays. Duplicate mutations of the GhCYP450 gene encoding a cytochrome P450 protein are responsible for the male sterility in cotton. The utilization of male sterility in cotton plays a vital role in improving yield and fiber quality. A complete male sterile line (ms5ms6) has been extensively used to develop hybrid cotton worldwide. Using Zhongkang-A (ZK-A) developed by transferring Bt and ms5ms6 genes into the commercial cultivar Zhongmiansuo 12, the duplicate genes were map-based cloned and confirmed via the virus-induced gene silencing (VIGS) assays. The duplicate mutations of GhCYP450 genes encoding a cytochrome P450 protein were responsible for producing male sterility in ms5ms6 in cotton. Sequence alignment showed that GhCYP450-Dt in ZK-A differed in two critical aspects from the fertile wild-type TM-1: GhCYP450-Dt has three amino acid (D98E, E168K, G198R) changes in the coding region and a 7-bp (GGAAAAA) insertion in the promoter domain; GhCYP450-At appears to be premature termination of GhCYP450 translation. Further morphological observation and cytological examination of GhCYP450-silenced plants induced by VIGS exhibited shorter filaments and no mature pollen grains. These results indicate that GhCYP450 is essential for pollen exine formation and pollen development for male fertility. Investigating the mechanisms of ms5ms6 male sterility will deepen our understanding of the development and utilization of heterosis.


Asunto(s)
Gossypium , Mutación , Infertilidad Vegetal , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Infertilidad Vegetal/genética
10.
Front Plant Sci ; 13: 1027806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407612

RESUMEN

Genome-wide association studies (GWAS) of fiber quality traits of upland cotton were conducted to identify the single-nucleotide polymorphic (SNP) loci associated with cotton fiber quality, which lays the foundation for the mining of elite] cotton fiber gene resources and its application in molecular breeding. A total of 612 upland cotton accessions were genotyped using the ZJU Cotton Chip No. 1 40K chip array via the liquid-phase probe hybridization-based genotyping-by-target-sequencing (GBTS) technology. In the present study, five fiber quality traits, namely fiber length, fiber strength, micronaire, uniformity and elongation, showed different degrees of variation in different environments. The average coefficient of variation of fiber strength was the greatest, whereas the average coefficient of variation of uniformity was the least. Significant or extremely significant correlations existed among the five fiber quality traits, especially fiber length, strength, uniformity and elongation all being significantly negative correlated with micronaire. Population cluster analysis divided the 612 accessions into four groups: 73 assigned to group I, 226 to group II, 220 to group III and 93 to group IV. Genome-wide association studies of five fiber quality traits in five environments was performed and a total of 42 SNP loci associated with target traits was detected, distributed on 19 chromosomes, with eight loci associated with fiber length, five loci associated with fiber strength, four loci associated with micronaire, twelve loci associated with fiber uniformity and thirteen loci associated with fiber elongation. Of them, seven loci were detected in more than two environments. Nine SNP loci related to fiber length, fiber strength, uniformity and elongation were found on chromosome A07, seven loci related to fiber length, fiber strength, micronaire and elongation were detected on chromosome D01, and five loci associated with fiber length, uniformity and micronaire were detected on chromosome D11. The results from this study could provide more precise molecular markers and genetic resources for cotton breeding for better fiber quality in the future.

11.
Front Plant Sci ; 13: 1020841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186026

RESUMEN

A virus-induced gene silencing (VIGS) system was established to induce endogenous target gene silencing by post-transcriptional gene silencing (PTGS), which is a powerful tool for gene function analysis in plants. Compared with stable transgenic plant via Agrobacterium-mediated gene transformation, phenotypes after gene knockdown can be obtained rapidly, effectively, and high-throughput through VIGS system. This approach has been successfully applied to explore unknown gene functions involved in plant growth and development, physiological metabolism, and biotic and abiotic stresses in various plants. In this system, GhCLA1 was used as a general control, however, silencing of this gene leads to leaf albino, wilting, and plant death ultimately. As such, it cannot indicate the efficiency of target gene silencing throughout the whole plant growth period. To address this question, in this study, we developed a novel marker gene, Gossypium PIGMENT GLAND FORMATION GENE (GoPGF), as the control to trace the efficiency of gene silencing in the infected tissues. GoPGF has been proved a key gene in gland forming. Suppression of GoPGF does not affect the normal growth and development of cotton. The number of gland altered related to the expression level of GoPGF gene. So it is a good marker that be used to trace the whole growth stages of plant. Moreover, we further developed a method of friction inoculation to enhance and extend the efficiency of VIGS, which facilitates the analysis of gene function in both the vegetative stage and reproductive stage. This improved VIGS technology will be a powerful tool for the rapid functional identification of unknown genes in genomes.

12.
Plant J ; 112(3): 800-811, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121755

RESUMEN

Oilseed crops are used to produce vegetable oil to satisfy the requirements of humans and livestock. Cotton (Gossypium spp.) is of great economic value because it is used as both an important textile commodity and a nutrient-rich resource. Cottonseed oil is rich in polyunsaturated fatty acids and does not contain trans fatty acids; hence, it is considered a healthy vegetable oil. However, research on the genetic basis for cottonseed protein content, oil production, and fatty acid composition is lacking. Here, we investigated the protein content, oil content, and fatty acid composition in terms of oleic acid (C18:1) and linoleic acid (C18:2) in mature cottonseeds from 318 Gossypium hirsutum accessions. Moreover, we examined the dynamic change of protein content and lipid composition including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) in developing seeds from 258 accessions at 10 and 20 days post-anthesis. Then, we conducted a genome-wide association study and identified 152 trait-associated loci and 64 candidate genes responsible for protein and oil-related contents in mature cottonseeds and ovules. Finally, six candidate genes were experimentally validated to be involved in the regulation of fatty acid biosynthesis through heterologous expression in Arabidopsis. These results comprise a solid foundation for expanding our understanding of lipid biosynthesis in cotton, which will help breeders manipulate protein and oil contents to make it a fully developed 'fiber, food, and oil crop'.


Asunto(s)
Arabidopsis , Gossypium , Humanos , Gossypium/genética , Gossypium/metabolismo , Aceite de Semillas de Algodón/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Semillas/genética , Semillas/metabolismo , Ácidos Grasos/metabolismo , Ácido Oléico/metabolismo , Ácido Linoleico/metabolismo , Aceites de Plantas/metabolismo , Textiles
13.
Front Plant Sci ; 13: 979585, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979082

RESUMEN

Verticillium, representing one of the world's major pathogens, causes Verticillium wilt in important woody species, ornamentals, agricultural, etc., consequently resulting in a serious decline in production and quality, especially in cotton. Gossupium hirutum and Gossypium barbadense are two kinds of widely cultivated cotton species that suffer from Verticillium wilt, while G. barbadense has much higher resistance toward it than G. hirsutum. However, the molecular mechanism regarding their divergence in Verticillium wilt resistance remains largely unknown. In the current study, G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 were compared at 0, 12, 24, 48, 72, 96, 120, and 144 h post-inoculation (hpi) utilizing high throughput RNA-Sequencing. As a result, a total of 3,549 and 4,725 differentially expressed genes (DEGs) were identified, respectively. In particular, the resistant type Hai7124 displayed an earlier and faster detection and signaling response to the Verticillium dahliae infection and demonstrated higher expression levels of defense-related genes over TM-1 with respect to transcription factors, plant hormone signal transduction, plant-pathogen interaction, and nucleotide-binding leucine-rich repeat (NLR) genes. This study provides new insights into the molecular mechanisms of divergence in Verticillium wilt resistance between G. barbadense and G. hirsutum and important candidate genes for breeding V. dahliae resistant cotton cultivars.

14.
Food Chem (Oxf) ; 5: 100130, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35992508

RESUMEN

After fiber, cottonseed is the second most important by-product of cotton production. However, high concentrations of toxic free gossypol deposited in the glands of the cottonseed greatly hamper its effective usage as food or feed. Here, we developed a cotton line with edible cottonseed by specifically silencing the endogenous expression of GoPGF in the seeds, which led to a glandless phenotype with an ultra-low gossypol content in the seeds and nearly normal gossypol in other parts of the plants. This engineered cotton maintains normal resistance to insect pests, but the gossypol content in the seeds dropped by 98%, and thus, it can be consumed directly as food. The trait of a low gossypol content in the cottonseeds was stable and heritable, while the protein, oil content, and fiber yield or quality were nearly unchanged compared to the transgenic receptor W0. In addition, comparative transcriptome analysis showed that down-regulated genes in the ovules of the glandless cotton were enriched in terpenoid biosynthesis, indicating the underlying relationship between gland formation and gossypol biosynthesis. These results pave the way for the comprehensive utilization of cotton as a fiber, oil, and feed crop in the future.

15.
Plant Biotechnol J ; 20(9): 1770-1785, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633313

RESUMEN

After polyploidization originated from one interspecific hybridization event in Gossypium, Gossypium barbadense evolved to produce extra-long staple fibres than Gossypium hirsutum (Upland cotton), which produces a higher fibre yield. The genomic diversity between G. barbadense and G. hirsutum thus provides a genetic basis for fibre trait variation. Recently, rapid accumulation of gene disruption or deleterious mutation was reported in allotetraploid cotton genomes, with unknown impacts on fibre traits. Here, we identified gene disruptions in allotetraploid G. hirsutum (18.14%) and G. barbadense (17.38%) through comparison with their presumed diploid progenitors. Relative to conserved genes, these disrupted genes exhibited faster evolution rate, lower expression level and altered gene co-expression networks. Within a module regulating fibre elongation, a hub gene experienced gene disruption in G. hirsutum after polyploidization, with a 2-bp deletion in the coding region of GhNPLA1D introducing early termination of translation. This deletion was observed in all of the 34 G. hirsutum landraces and 36 G. hirsutum cultivars, but not in 96% of 57 G. barbadense accessions. Retrieving the disrupted gene GhNPLA1D using its homoeolog GhNPLA1A achieved longer fibre length in G. hirsutum. Further enzyme activity and lipids analysis confirmed that GhNPLA1A encodes a typical phospholipase A and promotes cotton fibre elongation via elevating intracellular levels of linolenic acid and 34:3 phosphatidylinositol. Our work opens a strategy for identifying disrupted genes and retrieving their functions in ways that can provide valuable resources for accelerating fibre trait enhancement in cotton breeding.


Asunto(s)
Fibra de Algodón , Fitomejoramiento , Genes de Plantas/genética , Gossypium/genética , Fosfolipasas/genética
16.
BMC Genomics ; 23(1): 307, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428176

RESUMEN

BACKGROUND: Advances in genome sequencing technology, particularly restriction-site associated DNA sequence (RAD-seq) and whole-genome resequencing, have greatly aided the construction of cotton interspecific genetic maps based on single nucleotide polymorphism (SNPs), Indels, and other types of markers. High-density genetic maps can improve accuracy of quantitative trait locus (QTL) mapping, narrow down location intervals, and facilitate identification of the candidate genes. RESULT: In this study, 249 individuals from an interspecific F2 population (TM-1 and Hai7124) were re-sequenced, yielding 6303 high-confidence bin markers spanning 5057.13 cM across 26 cotton chromosomes. A total of 3380 recombination hot regions RHRs were identified which unevenly distributed on the 26 chromosomes. Based on this map, 112 QTLs relating to agronomic and physiological traits from seedling to boll opening stage were identified, including 15 loci associated with 14 traits that contained genes harboring nonsynonymous SNPs. We analyzed the sequence and expression of these ten candidate genes and discovered that GhRHD3 (GH_D10G0500) may affect fiber yield while GhGPAT6 (GH_D04G1426) may affect photosynthesis efficiency. CONCLUSION: Our research illustrates the efficiency of constructing a genetic map using binmap and QTL mapping on the basis of a certain size of the early-generation population. High-density genetic map features high recombination exchanges in number and distribution. The QTLs and the candidate genes identified based on this high-density genetic map may provide important gene resources for the genetic improvement of cotton.


Asunto(s)
Gossypium , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Fibra de Algodón , Gossypium/genética , Fenotipo , Análisis de Secuencia de ADN
17.
Plant J ; 108(3): 781-792, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492144

RESUMEN

The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that functions as the main deposit organ of gossypol and its derivatives. It is also an ideal system in which to study cell differentiation and organogenesis. However, only a few genes that determine the process of gland formation have been reported, including GoPGF, CGP1, and CGFs; the molecular mechanisms underlying gland initiation are still largely unclear. Here, we report the discovery of the novel stem pigment gland-forming gene GoSPGF by map-based cloning; annotated as a GRAS transcription factor, this gene is responsible for the glandless trait specifically on the stem. In the stem glandless mutant T582, a point mutation (C to A) was found to create a premature stop codon and truncate the protein. Similarly, virus-induced gene silencing of GoSPGF resulted in glandless stems and dramatically reduced gossypol content. Comparative transcriptomic data showed that loss of GoSPGF significantly suppressed expression of many genes involved in gossypol biosynthesis and altered expression of genes involved in gibberellic acid signaling/biosynthesis. Overall, these findings provide more insight into the networks regulating glandular structure differentiation and formation in cotton, which will be helpful for understanding other plants bearing special gland structures such as tobacco (Nicotiana benthamiana), artemisia annua, mint (Mentha spp.), and rubber (Hevea brasiliensis).


Asunto(s)
Gossypium/genética , Proteínas de Plantas/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Giberelinas/metabolismo , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Gosipol/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Transducción de Señal , Nicotiana/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
iScience ; 24(8): 102930, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34409276

RESUMEN

Cotton fiber is an excellent model for studying plant cell elongation and cell wall biogenesis as well because they are highly polarized and use conserved polarized diffuse growth mechanism. Fiber strength is an important trait among cotton fiber qualities due to ongoing changes in spinning technology. However, the molecular mechanism of fiber strength forming is obscure. Through map-based cloning, we identified the fiber strength gene GhUBX. Increasing its expression, the fiber strength of the transgenic cotton was significantly enhanced compared to the receptor W0 and the helices number of the transgenic fiber was remarkably increased. Additionally, we proved that GhUBX regulates the fiber helical growth by degrading the GhSPL1 via the ubiquitin 26S-proteasome pathway. Taken together, we revealed the internal relationship between fiber helices and fiber stronger. It will be useful for improving the fiber quality in cotton breeding and illustrating the molecular mechanism for plant twisted growth.

19.
Plant Biotechnol J ; 19(7): 1325-1336, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33448110

RESUMEN

Interspecific genomic variation can provide a genetic basis for local adaptation and domestication. A series of studies have presented its role of interspecific haplotypes and introgressions in adaptive traits, but few studies have addressed their role in improving agronomic character. Two allotetraploid Gossypium species, Gossypium barbadense (Gb) and G. hirsutum (Gh) originating from the Americas, are cultivated independently. Here, through sequencing and the comparison of one GWAS panel in 229 Gb accessions and two GWAS panels in 491 Gh accessions, we found that most associated loci or functional haplotypes for agronomic traits were highly divergent, representing the strong divergent improvement between Gb and Gh. Using a comprehensive interspecific haplotype map, we revealed that six interspecific introgressions from Gh to Gb were significantly associated with the phenotypic performance of Gb, which could explain 5%-40% of phenotypic variation in yield and fibre qualities. In addition, three introgressions overlapped with six associated loci in Gb, indicating that these introgression regions were under further selection and stabilized during improvement. A single interspecific introgression often possessed yield-increasing potential but decreased fibre qualities, or the opposite, making it difficult to simultaneously improve yield and fibre qualities. Our study not only has proved the importance of interspecific functional haplotypes or introgressions in the divergent improvement of Gb and Gh, but also supports their potential value in further human-mediated hybridization or precision breeding.


Asunto(s)
Gossypium , Fitomejoramiento , Mapeo Cromosómico , Fibra de Algodón , Domesticación , Gossypium/genética , Fenotipo
20.
Plant Biotechnol J ; 18(10): 2002-2014, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32030869

RESUMEN

Xinjiang has been the largest and highest yield cotton production region not only in China, but also in the world. Improvements in Upland cotton cultivars in Xinjiang have occurred via pedigree selection and/or crossing of elite alleles from the former Soviet Union and other cotton producing regions of China. But it is unclear how genomic constitutions from foundation parents have been selected and inherited. Here, we deep-sequenced seven historic foundation parents, comprising four cultivars introduced from the former Soviet Union (108Ф, C1470, 611Б and KK1543) and three from United States and Africa (DPL15, STV2B and UGDM), and re-sequenced sixty-nine Xinjiang modern cultivars. Phylogenetic analysis of more than 2 million high-quality single nucleotide polymorphisms allowed their classification two groups, suggesting that Xinjiang Upland cotton cultivars were not only spawned from 108Ф, C1470, 611Б and KK1543, but also had a close kinship with DPL15, STV2B and UGDM. Notably, identity-by-descent (IBD) tracking demonstrated that the former Soviet Union cultivars have made a huge contribution to modern cultivar improvement in Xinjiang. A total of 156 selective sweeps were identified. Among them, apoptosis-antagonizing transcription factor gene (GhAATF1) and mitochondrial transcription termination factor family protein gene (GhmTERF1) were highly involved in the determination of lint percentage. Additionally, the auxin response factor gene (GhARF3) located in inherited IBD segments from 108Ф and 611Б was highly correlated with fibre quality. These results provide an insight into the genomics of artificial selection for improving cotton production and facilitate next-generation precision breeding of cotton and other crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA