Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Total Environ ; 929: 172632, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653412

RESUMEN

The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.


Asunto(s)
Antioxidantes , Carbón Orgánico , Metales Pesados , Microbiota , Prunus dulcis , Microbiología del Suelo , Contaminantes del Suelo , Solanum lycopersicum , Carbón Orgánico/química , Contaminantes del Suelo/metabolismo , Antioxidantes/metabolismo , Microbiota/efectos de los fármacos , Disponibilidad Biológica , Suelo/química
2.
Chemosphere ; 293: 133476, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35016964

RESUMEN

Mitigation of greenhouse gas (GHGs) emissions and improving soil health using biochar (BC) shall help achieving the UN-Sustainable Development Goals. The impacts of walnut shells biochar (WSB) pyrolyzed at different temperatures on CO2 and N2O emission and soil health have not been yet sufficiently explored. We investigated the effects of addition of WSB pyrolyzed at either 300 °C (WSB-300), 450 °C (WSB-450), or at 600 °C (WSB-600) to alkaline soil on CO2 and N2O emissions, nutrients availability, and soil enzymes activities in a 120-day incubation experiment. Cumulative N2O emissions were reduced significantly as compared to the control, by 64.9%, 50.6%, and 36.4% after WSB-600, WSB-450 and WSB-300, respectively. However, the cumulative CO2 emissions increased, over the control, as follows: WSB-600 (50.7%), WSB-450 (68.6%), and WSB-300 (73.4%). Biochar addition, particularly WSB-600 significantly increased soil pH (from 8.1 to 8.34), soil organic C (SOC; from 8.6 to 22.3 g kg-1), available P (from 21.0 to 60.5 mg kg-1), and K (181.0-480.5 mg kg-1), and activities of urease, alkaline phosphatase, and invertase. However, an opposite pattern was observed with NH4+, NO3-, total N and ß-glucosidase activity after WSB application. The WBS produced from high temperature pyrolysis can be used for N2O emissions mitigation and improvement of soil pH, SOC, available P and K, and activities of urease, alkaline, phosphatase. However, WBS produced from low temperature pyrolysis can be used to promote N availability and ß-glucosidase; however, these findings should be verified under different field and climatic conditions.


Asunto(s)
Juglans , Suelo , Agricultura , Dióxido de Carbono/análisis , Carbón Orgánico , Óxido Nitroso/análisis , Nutrientes
3.
Environ Res ; 208: 112676, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998810

RESUMEN

With the growing awareness of environmental impacts of land degradation, pressure is mounting to improve the health and productivity of degrading soils, which could be achieved through the use of raw and modified biochar materials. The primary objective of the current study was to investigate the efficiency of pristine and Mg-modified rice-straw biochar (RBC and MRBC) for the reduction of greenhouse gases (GHG) emissions and improvement of soil properties. A 90 days' incubation experiment was conducted using treatments which included control (CK), two RBC dosages (1% and 2.5%), and two MRBC doses (1% and 2.5%). Soil physico-chemical and biological properties were monitored to assess the effects due to the treatments. Results showed that both biochars improved soil physicochemical properties as the rate of biochar increased. The higher rates of biochar (RBC2.5 and MRBC2.5) particularly increased enzymatic activities (Catalase, Invertase and Urease) in comparison to the control. Data obtained for phospholipid fatty acid (PLFA) concentration indicated an increase in the Gram-negative bacteria (G-), actinomycetes and total PLFA with the increased biochar rate, while Gram-positive bacteria (G+) showed no changes to either level of biochar. As regards fungi concentration, it decreased with the biochar addition, whereas arbuscular mycorrhizal fungi (AMF) showed non-significant changes. The release of CO2, CH4 and N2O showed a decreasing trend over the time. CO2 cumulative emission decreased for MRBC1 (5%) and MRBC2.5 (9%) over the pristine biochar treatments. The cumulative N2O emission decreased by 15-32% for RBC1 and RBC2.5 and by 22-33% for MRBC1 and MRBC2.5 as compared to the control, whereas CH4 emission showed non-significant changes. Overall, the present study provides for the first-time data that could facilitate the correct use of Mg-modified rice biochar as a soil additive for the mitigation of greenhouse gas emission and improvement of soil properties.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Agricultura/métodos , Carbón Orgánico , Óxido Nitroso , Suelo/química
4.
Chemosphere ; 289: 133202, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34890613

RESUMEN

Drought is a major environmental threat that affects plant growth and productivity. Strategies to mitigate the detrimental impacts of drought stress on plants are under scrutiny. Nanotechnology is considered an effective tool in resolving a wide range of environmental issues by offering novel and pragmatic solutions. A pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application (25 mg L-1 and 100 mg L-1) on the growth performance of cucumber subjected to drought stress. Applied ZnO NPs under normal conditions resulted in significant growth and biomass enhancement while reducing drought-induced decline. Photosynthetic pigments, photosynthesis, and PSII activity enhanced due to ZnO NPs application, attaining maximal values at 100 mg L-1 of ZnO NPs. Drought stress restricted growth and biomass buildup in cucumber seedlings by stimulating oxidative stress, which was manifested to excessive buildup of reactive oxygen species (ROS) and peroxidation, thereby decreasing membrane functioning. Plants exposed to ZnO NPs exhibited a reduction in ROS accumulation and lipid peroxidation. The substantial reduction in oxidative damage was manifested with the enhancement of enzymatic and non-enzymatic antioxidant components. The phenol and mineral contents were reduced due to drought stress. In addition, the content of proline, glycine betaine, free amino acids, and sugars increased due to ZnO NPs under normal and drought conditions. Furthermore, the drought-induced decline in the content of phenol and mineral nutrients was mitigated by ZnO NPs foliar application. These findings reveal that exogenous ZnO NPs application may be a pragmatic option in dealing with the drought stress of cucumber seedlings.


Asunto(s)
Cucumis sativus , Nanopartículas , Óxido de Zinc , Antioxidantes , Sequías , Plantones
5.
Environ Res ; 203: 111879, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390716

RESUMEN

To mitigate greenhouse gas (GHG) emissions, different strategies have been proposed, including application of dolomite, crop straw and biochar, thus contributing to cope with the increasing global warming affecting the planet. In the current study, pristine wheat straw biochar (WBC) and magnesium (MgCl2.6H2O) modified wheat straw biochar (MWBC) were used. Treatments included control (CK), two WBC dosages (1% and 2.5%), and two MWBC doses (1% and 2.5%). After 90 days of incubation, WBC and MWBC improved the soil physiochemical properties, being more pronounced with increasing rates of biochar. MWBC2.5 significantly decreased microbial biomass carbon (MBC), while microbial biomass nitrogen (MBN) increased when both biochar materials (WBC1 and MWBC1) were applied at low rate. Compared to control soil, Urease and Alkaline phosphatase activities increased with the increasing rate of WBC and MWBC. The activities of dehydrogenase and ß-glucosidase decreased with the WBC and MWBC application, compared to CK. The fluxes of all the three GHGs evaluated (CO2, CH4 and N2O) decreased with time for both biochar amendments, while cumulative emission of CO2 increased by 58% and 45% for WBC, and by 54% and 41% for MWBC, as compared to CK. The N2O cumulative emissions decreased by 18 and 34% for WBC, and by 25 and 41% for MWBC, compared to CK, whereas cumulative methane emission showed non-significant differences among all treatments. These findings indicate that Mg-modified wheat straw biochar would be an appropriate management strategy aiding to reduce GHG emissions and improving the physiochemical properties of affected soils, and specifically of the red dry land soil investigated in the current work.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Carbón Orgánico , Magnesio , Óxido Nitroso , Suelo , Triticum
6.
J Environ Manage ; 297: 113250, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274764

RESUMEN

A field experiment was carried out to evaluate the effects of different biochars on grain yield and phytoavailability and uptake of macro- and micro-nutrients by rice and wheat grown in a paddy soil in a rotation. Soil was treated with i) maize raw (un-washed) biochar (MRB), ii) maize water-washed biochar (MWB), iii) wheat raw biochar (WRB) or iv) wheat water-washed biochar (WWB) and untreated soil was used as control (CF). Inorganic fertilizers were applied to all soils while biochar treated soils received 20 ton ha-1 of designated biochar before rice cultivation in rice-wheat rotation. The WRB significantly (P < 0.05) increased rice grain yield and straw by up to 49%, compared to the CF. Biochar addition, particularly WRB, significantly increased the availability of N, P, K and their content in the grain (26-37%) and straw (22-37%) of rice and wheat. Also, the availability and grain content of Fe, Mn, Zn, and Cu increased significantly after biochar addition, particularly after the WRB, due to WRB water dissolved C acting as a carrier for micronutrients in soil and plant. However, the water-washing process altered biochar properties, particularly the water extractable C, which decreased its efficiency. Both wheat- and maize-derived biochars, particularly the WRB, are recommended to improve nutrients availability and to improve grain yield in the rice-wheat rotation agro-ecosystem. These results shed light on the importance of crop straw transformation into an important source for soil C and nutrients necessary for sustainable management of wheat-rice agro-ecosystem. However, with the current and future alternative energy demands, the decision on using crop biomass for soil conservation or for bioenergy becomes a challenge reliant on regulatory and policy frameworks.


Asunto(s)
Oryza , Contaminantes del Suelo , Carbón Orgánico , Ecosistema , Nutrientes , Suelo , Contaminantes del Suelo/análisis , Triticum , Agua , Zea mays
7.
Sci Rep ; 11(1): 13758, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215791

RESUMEN

Afforestation plays an important role in soil carbon storage and water balance. However, there is a lack of information on deep soil carbon and water storage. The study investigates the effect of returning farmland to the forest on soil carbon accumulation and soil water consumption in 20-m deep soil profile in the hilly and gully region of the Chinese Loess Plateau. Four sampling sites were selected: Platycladus orientalis (Linn.) Franco forest (PO: oriental arborvitae), Pinus tabulaeformis Carr. Forest (PT: southern Chinese pine), apple orchard (AO) and farmland (FL, as a control). Soil organic carbon (SOC) and soil inorganic carbon (SIC) content were measured in 50-cm sampling intervals of 20-m soil profiles, as well as the associated factors (e.g. soil water content). The mean SOC content of PT was the highest in the 1-5 m layer and that of FL was the lowest (p < 0.05). Compared with FL, the SOC storages of PO, PT and AO increased by 2.20, 6.33 and 0.90 kg m-2 (p > 0.05), respectively, in the whole profile. The SIC content was relatively uniform throughout the profile at all land-use types and SIC storage was 9-10 times higher than SOC storage. The soil water storage of PO, PT and AO was significantly different from that of FL with a decrease of 1169.32, 1161.60 and 1139.63 mm, respectively. After the 36-yrs implementation of the "Grain for Green" Project, SOC in 20 m soil profiles increased as a water depletion cost compared with FL. Further investigation is still needed to understand the deep soil water and carbon interactions regarding ecological restoration sustainability in the Northern Loess Plateau.

8.
Molecules ; 25(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244753

RESUMEN

A greenhouse pot trial was conducted to investigate the effect of organic amendments combined with triple superphosphate on the bioavailability of heavy metals (HMs), Amorpha fruticosa growth and metal uptake from Pb-Zn mine tailings. Cattle manure compost (CMC), spent mushroom compost (SMC) and agricultural field soil (AFS) were applied to tailings at 5%, 10%, 20% and 30% w/w ratio, whereas sewage sludge (SS) and wood biochar (WB) were mixed at 2.5%, 5%, 10% and 20% w/w ratio. Triple superphosphate (TSP) was added to all the treatments at 4:1 (molar ratio). Amendments efficiently decreased DTPA-extracted Pb, Zn, Cd and Cu in treatments. Chlorophyll contents and shoot and root dry biomass significantly (p< 0.05) increased in the treatments of CMC (except T4 for chlorophyll b) and SMC, whereas treatments of SS (except T1 for chlorophyll a and b), WB and AFS (except T4 for chlorophyll a and b) did not show positive effects as compared to CK1. Bioconcentration factor (BCF) and translocation factor (TF) values in plant tissues were below 1 for most treatments. In amended treatments, soluble protein content increased, phenylalanine ammonialyase (PAL) and polyphenol oxidase (PPO) decreased, and catalase (CAT) activity showed varied results as compared to CK1 and CK2. Results suggested that A. fruticosa can be a potential metal phytostabilizer and use of CMC or SMC in combination with TSP are more effective than other combinations for the in situ stabilization of Pb-Zn mine tailings.


Asunto(s)
Difosfatos/química , Fabaceae/química , Plomo/química , Zinc/química , Biodegradación Ambiental , Biomasa , Fenómenos Químicos , Clorofila/química , Concentración de Iones de Hidrógeno , Metales Pesados , Procesos Fotoquímicos
9.
Waste Manag ; 87: 125-134, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31109511

RESUMEN

The environmentally safe disposal of the large quantity of orange peels waste produced each day causes economic and environmental problems, which after conversion into biochar via pyrolysis technique might be used as an effective soil amendment. In this study, a 90-day incubation experiment was conducted to investigate the effects of orange peel waste and waste-derived biochar amendments on greenhouse gas emissions (GHG), soil biochemical properties, and soil enzyme activities. There were five treatments with different amendment levels: control without an amendment (Control), orange waste 1% (W1), orange waste 2% (W2), orange waste biochar 1% (B1), and orange waste biochar 2% (B2). The results showed that, compared with control, the amendments decreased cumulative N2O emissions by 59.2% (B2), 45.2% (B1), 20.6% (W2) and 10.2% (W1), respectively; and increased cumulative CH4 emissions by 81.7% (W1), 84.4% (W2), 75.8% (B1) and 74.9% (B2), respectively. Cumulative CO2 emissions decreased for the B1 (29.3%) and B2 (43.5%) over the waste treatments. While soil pH, SOC, nitrate nitrogen (NO3--N) and enzyme activities (urease and catalase) were significantly increased with the passage of time from the biochar amendments, ammonium nitrogen (NH4+-N) and invertase activities did not show this trend with time. Our study suggests that orange peel waste conversion to biochar should be a viable alternate method of disposal since land application resulted in reduced GHG and improvements in soil fertility.


Asunto(s)
Citrus sinensis , Gases de Efecto Invernadero , Carbón Orgánico , Óxido Nitroso , Suelo
10.
Molecules ; 24(9)2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075937

RESUMEN

The conversion of organic wastes into biochar via the pyrolysis technique could be used to produce soil amendments useful as a source of plant nutrients. In this study, we investigated the effects of fruit peels and milk tea waste-derived biochars on wheat growth, yield, root traits, soil enzyme activities and nutrient status. Eight amendment treatments were tested: no amendment (CK), chemical fertilizer (CF), banana peel biochar 1% (BB1 + CF), banana peel biochar 2% (BB2 + CF), orange peel biochar 1% (OB1 + CF), orange peel biochar 2% (OB2 + CF), milk tea waste biochar 1% (TB1 + CF) and milk tea waste biochar 2% (TB2 + CF). The results indicated that chlorophyll values, plant height, grain yield, dry weight of shoot and root were significantly (p < 0.05) increased for the TB2 + CF treatment as compared to other treatments. Similarly, higher contents of nutrients in grains, shoots and roots were observed for TB2 + CF: N (61.3, 23.3 and 7.6 g kg-1), P (9.2, 10.4 and 8.3 g kg-1) and K (9.1, 34.8 and 4.4 g kg-1). Compared to CK, the total root length (41.1%), surface area (56.5%), root volume (54.2%) and diameter (78.4%) were the greatest for TB2 + CF, followed by BB2 + CF, OB2 + CF, TB1 + CF, BB1 + CF, OB1 + CF and CF, respectively. However, BB + CF and OB + CF treatments increased ß-glucosidase and dehydrogenase, but not urease activity, as compared to the TB + CF amendment, while all enzyme activity decreased with the increased biochar levels. We concluded that the conversion of fruit peels and milk tea waste into biochar products contribute the benefits of environmental and economic issues, and should be tested as soil amendments combined with chemical fertilizers for the improvement of wheat growth and grain yield as well as soil fertility status under field conditions.


Asunto(s)
Carbón Orgánico/farmacología , Arcilla/química , Suelo/química , Triticum/crecimiento & desarrollo , Carbono/análisis , Fertilizantes , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Fósforo/análisis , Raíces de Plantas/química , Brotes de la Planta/química , Potasio/análisis , Análisis de Componente Principal , Semillas/química , Triticum/anatomía & histología
11.
Molecules ; 24(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682802

RESUMEN

Desert soil is one of the most severe conditions which negatively affect the environment and crop growth production in arid land. The application of organic amendments with inorganic fertilizers is an economically viable and environmentally comprehensive method to develop sustainable agriculture. The aim of this study was to assess whether milk tea waste (TW) amendment combined with chemical fertilizer (F) application can be used to improve the biochemical properties of sandy soil and wheat growth. The treatments included control without amendment (T1), chemical fertilizers (T2), TW 2.5% + F (T3), TW 5% + F (T4) and TW 10% + F (T5). The results showed that the highest chlorophyll (a and b) and carotenoids, shoot and root dry biomass, and leaf area index (LAI) were significantly (p < 0.05) improved with all amendment treatments. However, the highest root total length, root surface area, root volume and diameter were recorded for T4 among all treatments. The greater uptake of N, P, and K contents for T4 increased for the shoot by 68.9, 58.3, and 57.1%, and for the root by 65.7, 34.3, and 47.4% compared to the control, respectively. Compared with the control, T5 treatment decreased the soil pH significantly (p < 0.05) and increased soil enzyme activities such as urease (95.2%), ß-glucosidase (81.6%) and dehydrogenase (97.2%), followed by T4, T3, and T2. Our findings suggested that the integrated use of milk tea waste and chemical fertilizers is a suitable amendment method for improving the growth and soil fertility status of sandy soils.


Asunto(s)
Fertilizantes/análisis , Leche/química , Suelo/química , Residuos Sólidos , Té/química , Triticum/crecimiento & desarrollo , Agricultura , Animales , Biomasa , Carotenoides/metabolismo , Clorofila/metabolismo , Glucosidasas/metabolismo , Nitrógeno/química , Nutrientes/química , Oxidorreductasas/metabolismo , Fósforo/química , Potasio/química , Ureasa/metabolismo
12.
Ecotoxicol Environ Saf ; 145: 528-538, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28787614

RESUMEN

The efficacy of tobacco biochar (TB) alone and in combined with mineral additives: Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ), on immobilization of Pb, Cd, Cu and Zn, via reduce its (bio) availability to plants were investigated. The soils were collected from Tongguan contaminated (TG-C), Fengxian heavily contaminated (FX-HC) and Fengxian lightly contaminated (FX-LC) fields, Shaanxi province, China. The contaminated top soils were treated with low-cost amendments with an application rate of 1% and cultivated by Chinese cabbage (Brassica campestris L.) under greenhouse condition. Results showed that the all amendments (p < 0.05) potentially maximum reduced the DTPA-extractable Pb 82.53, Cd 31.52 and Cu 75.0% with TB + NZ in FX-LC soil, while in case of Zn 62.21% with TB + CH in FX-HC soil than control. The addition of amendments clearly increased dry biomass of Brassica campestris L. as compared with un-amended treatment (except TB + CH). Furthermore, these amendments markedly increased the uptake by plant shoot viz, Cd 10.51% with TB alone and 11.51% with TB + CB in FX-HC soil, similarly in FX-LC Cd increased 5.15% with TB + CH and 22.19% with TB + NZ, respectively. In same trend the Cu uptake in plant shoot was 19.30% with TB + CH in TG-C, whereas 43.90 TB + CH and 19.24% with TB + NZ in FX-LC soil. On the other hand as compared to control Cu accumulation in plant root was observed by TB, TB + CH and TB + CB treatments, while maximum uptake was 62.41% with TB + CH in TG-C soil. Consequently, except TB + CH treatment the chlorophyll content potentially increased in all amendment than control treatment, because of changes in soil EC, pH but increased CEC values after application of amendments. The results of this pot experiment are promising but they will further need to be confirmed with long-term field experiments.


Asunto(s)
Bentonita/química , Carbón Orgánico/química , Metales Pesados/análisis , Nicotiana/química , Contaminantes del Suelo/análisis , Zeolitas/química , Disponibilidad Biológica , Biomasa , Brassica/química , Brassica/crecimiento & desarrollo , China , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA