Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 18(11): e1010999, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441829

RESUMEN

Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Ratones , Animales , Plasmodium falciparum , Microscopía por Crioelectrón , Malaria Falciparum/parasitología , Proteínas Protozoarias , Malaria/parasitología , Ratones Transgénicos , Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios
2.
J Biol Chem ; 297(2): 100966, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34273351

RESUMEN

Cluster of differentiation-22 (CD22) belongs to the sialic acid-binding immunoglobulin (Ig)-like lectin family of receptors that is expressed on the surface of B cells. It has been classified as an inhibitory coreceptor for the B-cell receptor because of its function in establishing a baseline level of B-cell inhibition. The restricted expression of CD22 on B cells and its inhibitory function make it an attractive target for B-cell depletion in cases of B-cell malignancies. Genetically modified T cells with chimeric antigen receptors (CARs) derived from the m971 antibody have shown promise when used as an immunotherapeutic agent against B-cell acute lymphoblastic leukemia. A key aspect of the efficacy of this CAR-T was its ability to target a membrane-proximal epitope on the CD22 extracellular domain; however, the molecular details of m971 recognition of CD22 have thus far remained elusive. Here, we report the crystal structure of the m971 fragment antigen-binding in complex with the two most membrane-proximal Ig-like domains of CD22 (CD22d6-d7). The m971 epitope on CD22 resides at the most proximal Ig domain (d7) to the membrane, and the antibody paratope contains electrostatic surfaces compatible with interactions with phospholipid head groups. Together, our data identify molecular details underlying the successful transformation of an antibody epitope on CD22 into an effective CAR immunotherapeutic target.


Asunto(s)
Anticuerpos Monoclonales , Antígenos CD19 , Lectina 2 Similar a Ig de Unión al Ácido Siálico/química , Antígenos CD19/inmunología , Linfocitos B/metabolismo , Dominios Proteicos
3.
Nat Commun ; 12(1): 3661, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135340

RESUMEN

SARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10-14 M are achieved as a result of up to 10,000-fold potency enhancements compared to corresponding IgGs. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and IgG-like bioavailability. The MULTi-specific, multi-Affinity antiBODY (Multabody or MB) platform thus uniquely leverages binding avidity together with multi-specificity to deliver ultrapotent and broad neutralizers against SARS-CoV-2. The modularity of the platform also makes it relevant for rapid evaluation against other infectious diseases of global health importance. Neutralizing antibodies are a promising therapeutic for SARS-CoV-2.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Apoferritinas/química , Disponibilidad Biológica , Mapeo Epitopo , Humanos , Inmunoglobulina G/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ingeniería de Proteínas/métodos , Subunidades de Proteína/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Distribución Tisular
4.
Expert Rev Vaccines ; 19(11): 1023-1039, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33252273

RESUMEN

INTRODUCTION: Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED: C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION: However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Linfocitos B/inmunología , Vacunas/inmunología , Animales , Antígenos/inmunología , Humanos , Inmunidad Humoral/inmunología , Receptores de Antígenos de Linfocitos B/inmunología
5.
Nat Commun ; 11(1): 5066, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033255

RESUMEN

The inducible co-stimulator (ICOS) is a member of the CD28/B7 superfamily, and delivers a positive co-stimulatory signal to activated T cells upon binding to its ligand (ICOS-L). Dysregulation of this pathway has been implicated in autoimmune diseases and cancer, and is currently under clinical investigation as an immune checkpoint blockade. Here, we describe the molecular interactions of the ICOS/ICOS-L immune complex at 3.3 Å resolution. A central FDPPPF motif and residues within the CC' loop of ICOS are responsible for the specificity of the interaction with ICOS-L, with a distinct receptor binding orientation in comparison to other family members. Furthermore, our structure and binding data reveal that the ICOS N110 N-linked glycan participates in ICOS-L binding. In addition, we report crystal structures of ICOS and ICOS-L in complex with monoclonal antibodies under clinical evaluation in immunotherapy. Strikingly, antibody paratopes closely mimic receptor-ligand binding core interactions, in addition to contacting peripheral residues to confer high binding affinities. Our results uncover key molecular interactions of an immune complex central to human adaptive immunity and have direct implications for the ongoing development of therapeutic interventions targeting immune checkpoint receptors.


Asunto(s)
Anticuerpos/uso terapéutico , Complejo Antígeno-Anticuerpo/química , Ligando Coestimulador de Linfocitos T Inducibles/química , Proteína Coestimuladora de Linfocitos T Inducibles/química , Imitación Molecular/inmunología , Secuencia de Aminoácidos , Complejo Antígeno-Anticuerpo/metabolismo , Antígenos CD28/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Multimerización de Proteína
6.
Front Immunol ; 10: 699, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019513

RESUMEN

The organization and clustering of cell surface proteins plays a critical role in controlling receptor signaling; however, the biophysical mechanisms regulating these parameters are not well understood. Elucidating these mechanisms is highly significant to our understanding of immune function in health and disease, given the importance of B cell receptor (BCR) signaling in directing B cells to produce antibodies for the clearance of pathogens, and the potential deleterious effects of dysregulated BCR signaling, such as in B cell malignancies or autoimmune disease. One of main inhibitory co-receptors on B cells is CD22, a sialic-acid binding protein, which interacts homotypically with other sialylated CD22 molecules, as well as heterotypically with IgM and CD45. Although the importance of CD22 in attenuating BCR signaling is well established, we still do not fully understand what mediates CD22 organization and association to BCRs. CD22 is highly glycosylated, containing 12 N-linked glycosylation sites on its extracellular domain, the function of which remain to be resolved. We were interested in how these glycosylation sites mediate homotypic vs. heterotypic interactions. To this end, we mutated five out of the six N-linked glycosylation residues on CD22 localized closest to the sialic acid binding site. Glycan site N101 was not mutated as this resulted in lack of CD22 expression. We used dual-color super-resolution imaging to investigate the impact of altered glycosylation of CD22 on the nanoscale organization of CD22 and its association with BCR. We show that mutation of these five glycosylation sites increased the clustering tendency of CD22 and resulted in higher density CD22 nanoclusters. Consistent with these findings of altered CD22 organization, we found that mutation of N-glycan sites attenuated CD22 phosphorylation upon BCR stimulation, and consequently, increased BCR signaling. Importantly, we identified that these sites may be ligands for the soluble secreted lectin, galectin-9, and are necessary for galectin-9 mediated inhibition of BCR signaling. Taken together, these findings implicate N-linked glycosylation in the organization and function of CD22, likely through regulating heterotypic interactions between CD22 and its binding partners.


Asunto(s)
Linfocitos B/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Animales , Linfocitos B/metabolismo , Sitios de Unión/genética , Línea Celular , Femenino , Galectinas/metabolismo , Glicosilación , Humanos , Inmunoglobulina M/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fosforilación , Receptores de Antígenos de Linfocitos B/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/química , Lectina 2 Similar a Ig de Unión al Ácido Siálico/deficiencia , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Transducción de Señal
7.
Nat Commun ; 10(1): 78, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622256

RESUMEN

Antibodies against the Membrane-Proximal External Region (MPER) of the Env gp41 subunit neutralize HIV-1 with exceptional breadth and potency. Due to the lack of knowledge on the MPER native structure and accessibility, different and exclusive models have been proposed for the molecular mechanism of MPER recognition by broadly neutralizing antibodies. Here, accessibility of antibodies to the native Env MPER on single virions has been addressed through STED microscopy. STED imaging of fluorescently labeled Fabs reveals a common pattern of native Env recognition for HIV-1 antibodies targeting MPER or the surface subunit gp120. In the case of anti-MPER antibodies, the process evolves with extra contribution of interactions with the viral lipid membrane to binding specificity. Our data provide biophysical insights into the recognition of the potent and broadly neutralizing MPER epitope on HIV virions, and as such is of importance for the design of therapeutic interventions.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Anti-VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , VIH-1/inmunología , Unión Proteica/inmunología , Anticuerpos Neutralizantes/inmunología , Epítopos/química , Epítopos/inmunología , Colorantes Fluorescentes/química , Células HEK293 , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Humanos , Procesamiento de Imagen Asistido por Computador , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Microscopía Fluorescente/métodos , Virión/inmunología , Virión/metabolismo
8.
J Vis Exp ; (137)2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30035760

RESUMEN

Glycoproteins on the surface of cells play critical roles in cellular function, including signalling, adhesion and transport. On leukocytes, several of these glycoproteins possess immunoglobulin (Ig) folds and are central to immune recognition and regulation. Here, we present a platform for the design, expression and biophysical characterization of the extracellular domain of human B cell receptor CD22. We propose that these approaches are broadly applicable to the characterization of mammalian glycoprotein ectodomains containing Ig domains. Two suspension human embryonic kidney (HEK) cell lines, HEK293F and HEK293S, are used to express glycoproteins harbouring complex and high-mannose glycans, respectively. These recombinant glycoproteins with different glycoforms allow investigating the effect of glycan size and composition on ligand binding. We discuss protocols for studying the kinetics and thermodynamics of glycoprotein binding to biologically relevant ligands and therapeutic antibody candidates. Recombinant glycoproteins produced in HEK293S cells are amenable to crystallization due to glycan homogeneity, reduced flexibility and susceptibility to endoglycosidase H treatment. We present methods for soaking glycoprotein crystals with heavy atoms and small molecules for phase determination and analysis of ligand binding, respectively. The experimental protocols discussed here hold promise for the characterization of mammalian glycoproteins to give insight into their function and investigate the mechanism of action of therapeutics.


Asunto(s)
Cristalografía por Rayos X/métodos , Glicoproteínas/metabolismo , Inmunoglobulinas/química , Secuencia de Aminoácidos , Células HEK293 , Humanos , Unión Proteica , Transfección
9.
J Mol Biol ; 430(3): 322-336, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29277294

RESUMEN

Monoclonal antibodies constitute one of the largest groups of drugs to treat cancers and immune disorders, and are guiding the design of vaccines against infectious diseases. Fragments antigen-binding (Fabs) have been preferred over monoclonal antibodies for the structural characterization of antibody-antigen complexes due to their relatively low flexibility. Nonetheless, Fabs often remain challenging to crystallize because of the surface characteristics of complementary determining regions and the residual flexibility in the hinge region between the variable and constant domains. Here, we used a variable heavy-chain (VHH) domain specific for the human kappa light chain to assist in the structure determination of three therapeutic Fabs that were recalcitrant to crystallization on their own. We show that this ligand alters the surface properties of the antibody-ligand complex and lowers its aggregation temperature to favor crystallization. The VHH crystallization chaperone also restricts the flexible hinge of Fabs to a narrow range of angles, and so independently of the variable region. Our findings contribute a valuable approach to antibody structure determination and provide biophysical insight into the principles that govern the crystallization of macromolecules.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Cristalización/métodos , Cristalografía por Rayos X/métodos , Fragmentos Fab de Inmunoglobulinas/química , Cadenas kappa de Inmunoglobulina/química , Agregado de Proteínas , Anticuerpos de Dominio Único/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Alineación de Secuencia
10.
Nat Commun ; 8(1): 764, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970495

RESUMEN

CD22 maintains a baseline level of B-cell inhibition to keep humoral immunity in check. As a B-cell-restricted antigen, CD22 is targeted in therapies against dysregulated B cells that cause autoimmune diseases and blood cancers. Here we report the crystal structure of human CD22 at 2.1 Å resolution, which reveals that specificity for α2-6 sialic acid ligands is dictated by a pre-formed ß-hairpin as a unique mode of recognition across sialic acid-binding immunoglobulin-type lectins. The CD22 ectodomain adopts an extended conformation that facilitates concomitant CD22 nanocluster formation on B cells and binding to trans ligands to avert autoimmunity in mammals. We structurally delineate the CD22 site targeted by the therapeutic antibody epratuzumab at 3.1 Å resolution and determine a critical role for CD22 N-linked glycosylation in antibody engagement. Our studies provide molecular insights into mechanisms governing B-cell inhibition and valuable clues for the design of immune modulators in B-cell dysfunction.The B-cell-specific co-receptor CD22 is a therapeutic target for depleting dysregulated B cells. Here the authors structurally characterize the ectodomain of CD22 and present its crystal structure with the bound therapeutic antibody epratuzumab, which gives insights into the mechanism of inhibition of B-cell activation.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos B/inmunología , Inmunidad Humoral/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Anticuerpos Monoclonales Humanizados/ultraestructura , Cristalografía por Rayos X , Humanos , Lectinas/inmunología , Microscopía Electrónica , Terapia Molecular Dirigida , Conformación Proteica , Lectina 2 Similar a Ig de Unión al Ácido Siálico/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA