Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Curr Mol Pharmacol ; 16(2): 188-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35049444

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a slow eye disease that affects the retina due to a long-standing uncontrolled diabetes mellitus. Hyperglycemia-induced oxidative stress can lead to neuronal damage leading to DR. OBJECTIVE: The aim of the current investigation is to assess the protective effects of thymoquinone (TQ) as a potential compound for the treatment and/or prevention of neurovascular complications of diabetes, including DR. METHODS: Diabetes was induced in rats by the administration of streptozotocin (55 mg/kg intraperitoneally, i.p.). Subsequently, diabetic rats were treated with either TQ (2 mg/kg i.p.) or vehicle on alternate days for three weeks. A healthy control group was also run in parallel. At the end of the treatment period, animals were euthanized, and the retinas were collected and analyzed for the expression levels of brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), nerve growth factor receptor (NGFR), and caspase-3 using Western blotting techniques in the retina of diabetic rats and compared with the normal control rats. In addition, dichlorofluorescein (DCF) levels in the retina were assessed as a marker of reactive oxygen species (ROS), and blood-retinal barrier breakdown (BRB) was examined for vascular permeability. The systemic effects of TQ treatments on glycemic control, kidney and liver functions were also assessed in all groups. RESULTS: Diabetic animals treated with TQ showed improvements in the liver and kidney functions compared with control diabetic rats. Normalization in the levels of neuroprotective factors, including BDNF, TH, and NGFR, was observed in the retina of diabetic rats treated with TQ. In addition, TQ ameliorated the levels of apoptosis regulatory protein caspase-3 in the retina of diabetic rats and reduced disruption of the blood-retinal barrier, possibly through a reduction in reactive oxygen species (ROS) generation. CONCLUSION: These findings suggest that TQ harbors a significant potential to limit the neurodegeneration and retinal damage that can be provoked by hyperglycemia in vivo.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Hiperglucemia , Retina , Animales , Ratas , Factor Neurotrófico Derivado del Encéfalo/farmacología , Caspasa 3/metabolismo , Caspasa 3/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Modelos Animales , Especies Reactivas de Oxígeno/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo
2.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144730

RESUMEN

We analyzed the expression of ADAMTS proteinases ADAMTS-1, -2, -4, -5 and -13; their activating enzyme MMP-15; and the degradation products of proteoglycan substrates versican and biglycan in an ocular microenvironment of proliferative diabetic retinopathy (PDR) patients. Vitreous samples from PDR and nondiabetic patients, epiretinal fibrovascular membranes from PDR patients, rat retinas, retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied. The levels of ADAMTS proteinases and MMP-15 were increased in the vitreous from PDR patients. Both full-length and cleaved activation/degradation fragments of ADAMTS proteinases were identified. The amounts of versican and biglycan cleavage products were increased in vitreous from PDR patients. ADAMTS proteinases and MMP-15 were localized in endothelial cells, monocytes/macrophages and myofibroblasts in PDR membranes, and ADAMTS-4 was expressed in the highest number of stromal cells. The angiogenic activity of PDR membranes correlated significantly with levels of ADAMTS-1 and -4 cellular expression. ADAMTS proteinases and MMP-15 were expressed in rat retinas. ADAMTS-1 and -5 and MMP-15 levels were increased in diabetic rat retinas. HRMECs and Müller cells constitutively expressed ADAMTS proteinases but not MMP-15. The inhibition of NF-κB significantly attenuated the TNF-α-and-VEGF-induced upregulation of ADAMTS-1 and -4 in a culture medium of HRMECs and Müller cells. In conclusion, ADAMTS proteinases, MMP-15 and versican and biglycan cleavage products were increased in the ocular microenvironment of patients with PDR.


Asunto(s)
Proteínas ADAMTS/metabolismo , Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Biglicano/metabolismo , Western Blotting , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , FN-kappa B/metabolismo , Péptido Hidrolasas/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Versicanos/genética , Versicanos/metabolismo , Cuerpo Vítreo/metabolismo
3.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680238

RESUMEN

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

4.
Invest Ophthalmol Vis Sci ; 62(9): 32, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293080

RESUMEN

Purpose: Inflammation, angiogenesis and fibrosis are pathological hallmarks of proliferative diabetic retinopathy (PDR). The CD146/sCD146 pathway displays proinflammatory and proangiogenic properties. We investigated the role of this pathway in the pathophysiology of PDR. Methods: Vitreous samples from 41 PDR and 27 nondiabetic patients, epiretinal fibrovascular membranes from 18 PDR patients, rat retinas, human retinal microvascular endothelial cells (HRMECs) and human retinal Müller glial cells were studied by ELISA, Western blot analysis, immunohistochemistry and immunofluorescence microscopy analysis. Blood-retinal barrier breakdown was assessed with fluorescein isothiocyanate-conjugated dextran. Results: sCD146 and VEGF levels were significantly higher in vitreous samples from PDR patients than in nondiabetic patients. In epiretinal membranes, immunohistochemical analysis revealed CD146 expression in leukocytes, vascular endothelial cells and myofibroblasts. Significant positive correlations were detected between numbers of blood vessels expressing CD31, reflecting angiogenic activity of PDR, and numbers of blood vessels and stromal cells expressing CD146. Western blot analysis showed significant increase of CD146 in diabetic rat retinas. sCD146 induced upregulation of phospho-ERK1/2, NF-κB , VEGF and MMP-9 in Müller cells. The hypoxia mimetic agent cobalt chloride, VEGF and TNF-α induced upregulation of sCD146 in HRMECs. The MMP inhibitor ONO-4817 attenuated TNF-α-induced upregulation of sCD146 in HRMECs. Intravitreal administration of sCD146 in normal rats significantly increased retinal vascular permeability and induced significant upregulation of phospho-ERK1/2, intercellular adhesion molecule-1 and VEGF in the retina. sCD146 induced migration of HRMECs. Conclusions: These results suggest that the CD146/sCD146 pathway is involved in the initiation and progression of PDR.


Asunto(s)
Barrera Hematorretinal/metabolismo , Diabetes Mellitus Experimental , Retinopatía Diabética/metabolismo , Neovascularización Retiniana/metabolismo , Regulación hacia Arriba , Animales , Biomarcadores/metabolismo , Western Blotting , Antígeno CD146/biosíntesis , Células Cultivadas , Retinopatía Diabética/clasificación , Retinopatía Diabética/patología , Ensayo de Inmunoadsorción Enzimática , Células Ependimogliales/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratas , Neovascularización Retiniana/etiología , Neovascularización Retiniana/patología
5.
Mol Cell Biochem ; 476(5): 2099-2109, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33515385

RESUMEN

NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.


Asunto(s)
Acetofenonas/farmacología , Diabetes Mellitus Experimental/enzimología , Retinopatía Diabética/enzimología , Células Ependimogliales/enzimología , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/efectos de los fármacos , Retina/enzimología , Animales , Línea Celular , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/patología , Células Ependimogliales/patología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Retina/patología
6.
Front Physiol ; 12: 807747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082694

RESUMEN

Purpose: Endogenous tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) has powerful regulatory effects on inflammation and angiogenesis. In this study, we investigated the role of TIMP-3 in regulating inflammation in the diabetic retina. Methods: Vitreous samples from patients with proliferative diabetic retinopathy (PDR) and non-diabetic patients were subjected to Western blot analysis. Streptozotocin-treated rats were used as a preclinical diabetic retinopathy (DR) model. Blood-retinal barrier (BRB) breakdown was assessed with fluorescein isothiocyanate (FITC)-conjugated dextran. Rat retinas, human retinal microvascular endothelial cells (HRMECs) and human retinal Müller glial cells were studied by Western blot analysis and ELISA. Adherence of human monocytes to HRMECs was assessed and in vitro angiogenesis assays were performed. Results: Tissue inhibitor of matrix metalloproteinase-3 in vitreous samples was largely glycosylated. Intravitreal injection of TIMP-3 attenuated diabetes-induced BRB breakdown. This effect was associated with downregulation of diabetes-induced upregulation of the p65 subunit of NF-κB, intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF), whereas phospho-ERK1/2 levels were not altered. In Müller cell cultures, TIMP-3 significantly attenuated VEGF upregulation induced by high-glucose (HG), the hypoxia mimetic agent cobalt chloride (CoCl2) and TNF-α and attenuated MCP-1 upregulation induced by CoCl2 and TNF-α, but not by HG. TIMP-3 attenuated HG-induced upregulation of phospho-ERK1/2, caspase-3 and the mature form of ADAM17, but not the levels of the p65 subunit of NF-κB and the proform of ADAM17 in Müller cells. TIMP-3 significantly downregulated TNF-α-induced upregulation of ICAM-1 and VCAM-1 in HRMECs. Accordingly, TIMP-3 significantly decreased spontaneous and TNF-α- and VEGF-induced adherence of monocytes to HRMECs. Finally, TIMP-3 significantly attenuated VEGF-induced migration, chemotaxis and proliferation of HRMECs. Conclusion: In vitro and in vivo data point to anti-inflammatory and anti-angiogenic effects of TIMP-3 and support further studies for its applications in the treatment of DR.

7.
Front Immunol ; 11: 601639, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552057

RESUMEN

The transmembrane chemokine pathways CXCL16/CXCR6 and CX3CL1/CX3CR1 are strongly implicated in inflammation and angiogenesis. We investigated the involvement of these chemokine pathways and their processing metalloproteinases ADAM10 and ADAM17 in the pathophysiology of proliferative diabetic retinopathy (PDR). Vitreous samples from 32 PDR and 24 non-diabetic patients, epiretinal membranes from 18 patients with PDR, rat retinas, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis. In vitro angiogenesis assays were performed and the adherence of leukocytes to CXCL16-stimulated HRMECs was assessed. CXCL16, CX3CL1, ADAM10, ADAM17 and vascular endothelial growth factor (VEGF) levels were significantly increased in vitreous samples from PDR patients. The levels of CXCL16 were 417-fold higher than those of CX3CL1 in PDR vitreous samples. Significant positive correlations were found between the levels of VEGF and the levels of CXCL16, CX3CL1, ADAM10 and ADAM17. Significant positive correlations were detected between the numbers of blood vessels expressing CD31, reflecting the angiogenic activity of PDR epiretinal membranes, and the numbers of blood vessels and stromal cells expressing CXCL16, CXCR6, ADAM10 and ADAM17. CXCL16 induced upregulation of phospho-ERK1/2, p65 subunit of NF-κB and VEGF in cultured Müller cells and tumor necrosis factor-α induced upregulation of soluble CXCL16 and ADAM17 in Müller cells. Treatment of HRMECs with CXCL16 resulted in increased expression of intercellular adhesion molecule-1 (ICAM-1) and increased leukocyte adhesion to HRMECs. CXCL16 induced HRMEC proliferation, formation of sprouts from HRMEC spheroids and phosphorylation of ERK1/2. Intravitreal administration of CXCL16 in normal rats induced significant upregulation of the p65 subunit of NF-κB, VEGF and ICAM-1 in the retina. Our findings suggest that the chemokine axis CXCL16/CXCR6 and the processing metalloproteinases ADAM10 and ADAM17 might serve a role in the initiation and progression of PDR.


Asunto(s)
Proteína ADAM10/inmunología , Proteína ADAM17/inmunología , Secretasas de la Proteína Precursora del Amiloide/inmunología , Receptor 1 de Quimiocinas CX3C/inmunología , Quimiocina CX3CL1/inmunología , Quimiocina CXCL16/inmunología , Retinopatía Diabética/inmunología , Proteínas de la Membrana/inmunología , Animales , Retinopatía Diabética/patología , Humanos , Masculino , Ratas
8.
Acta Ophthalmol ; 98(1): e1-e12, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31318490

RESUMEN

PURPOSE: Galectin-1 regulates endothelial cell function and promotes angiogenesis. We investigated the hypothesis that galectin-1 may be involved in the pathogenesis of proliferative diabetic retinopathy (PDR). METHODS: Vitreous samples from 36 PDR and 20 nondiabetic patients, epiretinal fibrovascular membranes from 13 patients with PDR, rat retinas and human retinal Müller glial cells were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and Western blot analysis. In vitro angiogenesis assays were performed and the adherence of leukocytes to galectin-1-stimulated human retinal microvascular endothelial cells (HRMECs) was assessed. RESULTS: The ELISA analysis revealed that galectin-1 and vascular endothelial growth factor (VEGF) levels were significantly higher in vitreous samples from PDR patients than in those from nondiabetics (p < 0.001 for both comparisons). A significant positive correlation was found between the levels of galectin-1 and VEGF (r = 0.354; p = 0.022). In epiretinal membranes, immunohistochemical analysis showed that galectin-1 was expressed in vascular endothelial cells expressing CD31, myofibroblasts expressing α-smooth muscle actin and leukocytes expressing CD45. The galectin-1 receptor neuropilin-1 was expressed on vascular endothelial cells. CD31 staining was used as a marker to assess microvessel density (MVD). Significant positive correlation was detected between MVD in epiretinal membranes and the number of blood vessels expressing galectin-1 (r = 0.848; p < 0.001). Western blot analysis demonstrated significant increase of galectin-1 protein in rat retinas after induction of diabetes. ELISA analysis revealed that hydrogen peroxide and cobalt chloride (CoCl2 ) induced upregulation of galectin-1 in Müller cells. Treatment with galectin-1 induced upregulation of VEGF in Müller cells and increased leukocyte adhesion to HRMECs. The galectin-1 inhibitor OTX008 attenuated VEGF-induced HRMECs migration and CoCl2 -induced upregulation of NF-κB, galectin-1 and VEGF in Müller cells. CONCLUSIONS: These results suggest that galectin-1is involved in the pathogenesis of PDR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética/metabolismo , Galectina 1/biosíntesis , Cuerpo Vítreo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Retinopatía Diabética/patología , Ensayo de Inmunoadsorción Enzimática , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Vitrectomía , Cuerpo Vítreo/patología , Adulto Joven
9.
Ocul Immunol Inflamm ; 28(4): 575-588, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31403827

RESUMEN

PURPOSE: To investigate the expression of IL-11 and its receptor IL-11Rα and to quantify density of CD163+ M2 macrophages in proliferative diabetic retinopathy (PDR). METHODS: Vitreous samples from 29 PDR and 19 nondiabetic patients, epiretinal fibrovascular membranes from 15 patients with PDR and Müller cells were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis. RESULTS: We showed a significant increase in expression of IL-11, soluble(s) IL-11Rα, sCD163 and VEGF in vitreous samples from PDR patients compared to nondiabetic controls. Significant positive correlations were found between levels of VEGF and levels of IL-11 and sCD163. Significant positive correlations were found between microvessel density and number of blood vessels and stromal cells expressing IL-11, IL-11Rα and CD163 in PDR epiretinal membranes. The hypoxia mimetic agent cobalt chloride induced upregulation of IL-11 and IL-11Ra in cultured Müller cells. CONCLUSIONS: IL-11/IL-11Rα signaling and CD163+ M2 macrophages might be involved in PDR angiogenesis.


Asunto(s)
Retinopatía Diabética/genética , Células Ependimogliales/patología , Regulación de la Expresión Génica , Interleucina-11/genética , Adulto , Western Blotting , Recuento de Células , Células Cultivadas , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica , Interleucina-11/biosíntesis , Masculino , Persona de Mediana Edad , ARN/genética , Regulación hacia Arriba
10.
Front Immunol ; 10: 2752, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866994

RESUMEN

The macrophage migration inhibitory factor (MIF)/CD74 signaling pathway is strongly implicated in inflammation and angiogenesis. We investigated the expression of MIF and its receptor CD74 in proliferative diabetic retinopathy (PDR) to reveal a possible role of this pathway in the pathogenesis of PDR. Levels of MIF, soluble (s)CD74, soluble intercellular adhesion molecule-1 (sICAM-1) and vascular endothelial growth factor (VEGF) were significantly increased in the vitreous from patients with PDR compared to nondiabetic control samples. We detected significant positive correlations between the levels of MIF and the levels of sICAM-1 (r = 0.43; p = 0.001) and VEGF (r = 0.7; p < 0.001). Through immunohistochemical analysis of PDR epiretinal membranes, significant positive correlations were also found between microvessel density (CD31 expression) and the numbers of blood vessels expressing MIF (r = 0.56; p = 0.045) and stromal cells expressing MIF (r = 0.79; p = 0.001) and CD74 (r = 0.59; p = 0.045). Similar to VEGF, MIF was induced in Müller cells cultured under hypoxic conditions and MIF induced phosphorylation of ERK1/2 and VEGF production in Müller cells. Intravitreal administration of MIF in normal rats induced increased retinal vascular permeability and significant upregulation of phospho-ERK1/2, NF-κB, ICAM-1 and vascular cell adhesion molecule-1 expression in the retina. MIF induced migration and proliferation of human retinal microvascular endothelial cells. These results suggest that MIF/CD74 signaling is involved in PDR angiogenesis.


Asunto(s)
Retinopatía Diabética/etiología , Inflamación/etiología , Oxidorreductasas Intramoleculares/fisiología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Neovascularización Patológica/etiología , Adulto , Anciano , Antígenos de Diferenciación de Linfocitos B/análisis , Antígenos de Diferenciación de Linfocitos B/fisiología , Movimiento Celular , Células Cultivadas , Retinopatía Diabética/fisiopatología , Femenino , Antígenos de Histocompatibilidad Clase II/análisis , Antígenos de Histocompatibilidad Clase II/fisiología , Humanos , Molécula 1 de Adhesión Intercelular/análisis , Oxidorreductasas Intramoleculares/análisis , Factores Inhibidores de la Migración de Macrófagos/análisis , Masculino , Persona de Mediana Edad , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/análisis
11.
Curr Eye Res ; 44(10): 1133-1143, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31136205

RESUMEN

Purpose: High-mobility group box-1 (HMGB1) mediates inflammation and breakdown of blood-retinal barrier (BRB) in diabetic retina. Sirtuin-1 (SIRT1) has protective effects against inflammation and oxidative stress. The aim of this study was to investigate the interaction between HMGB1 and SIRT1 in regulating BRB breakdown in diabetic retina. Methods: BRB breakdown was assessed in vivo with fluorescein isothiocyanate-conjugated dextran. Vitreous samples from 47 proliferative diabetic retinopathy (PDR) and 19 nondiabetic patients, and epiretinal membranes from 13 patients with PDR were studied by enzyme-linked immunosorbent assay and immunohistochemistry. Retinas from 4-week diabetic rats and from normal rats intravitreally injected with HMGB1 were studied by spectrophotometric assay, Western blot analysis, and RT-PCR. We also studied the effect of the HMGB1 inhibitor glycyrrhizin and the SIRT1 activator resveratrol on diabetes-induced biochemical changes in the retina. Results: HMGB1 levels in vitreous samples from PDR patients were significantly higher than in nondiabetic controls, whereas SIRT1 levels were significantly lower in vitreous samples from patients with inactive PDR than those in patients with active PDR and nondiabetic controls. In epiretinal membranes, SIRT1 was expressed in vascular endothelial cells and stromal cells. Diabetes and intravitreal injection of HMGB1 in normal rats downregulated SIRT1expression, whereas glycyrrhizin and resveratrol normalized diabetes-induced downregulation of SIRT1. Resveratrol significantly attenuated diabetes-induced downregulation of occludin and upregulation of HMGB1 and receptor for advanced glycation end products in the retina and breakdown of BRB. Conclusions: Our findings suggest that a functional link between SIRT1 and HMGB1 is involved in regulating of BRB breakdown in diabetic retina.


Asunto(s)
Barrera Hematorretinal/fisiología , Retinopatía Diabética/metabolismo , Proteína HMGB1/metabolismo , Sirtuina 1/metabolismo , Cuerpo Vítreo/metabolismo , Animales , Antiinflamatorios/farmacología , Western Blotting , Dextranos/metabolismo , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática , Membrana Epirretinal/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Colorantes Fluorescentes/metabolismo , Ácido Glicirrínico/farmacología , Proteína HMGB1/farmacología , Humanos , Inmunohistoquímica , Inyecciones Intravítreas , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Resveratrol/farmacología
12.
Mol Vis ; 24: 394-406, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29853773

RESUMEN

Purpose: Matrix metalloproteinase-14 (MMP-14) is a transmembrane MMP that plays a critical role in promoting angiogenesis. We investigated the expression levels of MMP-14 and correlated the levels with clinical disease activity and with the levels of the angiogenic factors vascular endothelial growth factor (VEGF) and MMP-9 in proliferative diabetic retinopathy (PDR). To reinforce the findings at the functional level, we examined the expression of MMP-14 in the retinas of diabetic rats. Methods: Vitreous samples from 34 patients with PDR and 18 nondiabetic patients and epiretinal membranes from 13 patients with PDR and the retinas of rats were studied with enzyme-linked immunosorbent assay, immunohistochemistry, western blotting, and real-time reverse transcription PCR (RT-PCR). Results: The MMP-14, VEGF, and MMP-9 levels were statistically significantly higher in the vitreous samples from patients with PDR than in the samples from the nondiabetic controls (p<0.001 for all comparisons). The MMP-14 levels in patients with PDR with active neovascularization were statistically significantly higher than those in patients with inactive PDR (p<0.001). There were statistically significant positive correlations between levels of MMP-14 and levels of VEGF (r = 0.3; p = 0.032) and MMP-9 (r = 0.54; p<0.001). In the epiretinal membranes, MMP-14 was expressed in vascular endothelial cells, leukocytes, and myofibroblasts. Statistically significant positive correlations were detected between the numbers of blood vessels expressing CD31 and the numbers of blood vessels (r = 0.74; p = 0.004) and stromal cells (r = 0.72; p = 0.005) expressing MMP-14. Statistically significant increases of MMP-14 mRNA and protein were detected in rat retinas after induction of diabetes. Conclusions: These results suggest that MMP-14 is involved in PDR angiogenesis.


Asunto(s)
Retinopatía Diabética/genética , Células Endoteliales/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Neovascularización Patológica/genética , Retina/metabolismo , Neovascularización Retiniana/genética , Adulto , Anciano , Animales , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Estudios de Casos y Controles , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Células Endoteliales/patología , Femenino , Regulación de la Expresión Génica , Humanos , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratas , Retina/patología , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/irrigación sanguínea , Cuerpo Vítreo/metabolismo , Cuerpo Vítreo/patología
13.
J Ocul Pharmacol Ther ; 34(7): 512-520, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29912609

RESUMEN

PURPOSE: To examine the effects of poly(ADP-ribose)polymerase-1 (PARP-1) inhibitor 1,5-isoquinolinediol (IQ) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived oxidative stress in diabetic retina. METHODS: Streptozotocin-induced diabetic rats were treated with IQ. The NADPH oxidase enzyme activity was determined by luminometer. Expression of gp91phox, P47phox and nitrated proteins was examined by western blot. Interaction between gp91phox and P47phox was determined by coimmunoprecipitation. Enzyme-linked immunosorbent assay was utilized to measure the level of retinal total antioxidant capacity. We also studied the effect of the IQ on hydrogen peroxide (H2O2)-induced cleavage of PARP-1 and caspase-3 in human retinal Müller glial cells. RESULTS: Treatment of retinal Müller cells with H2O2-induced PARP-1 and caspase-3 cleavage that was attenuated by IQ cotreatment. Diabetes upregulated PARP-1, NADPH oxidase enzyme activity, gp91phox, P47phox, nitrated protein expression and interaction between gp91phox and P47phox, and downregulated total antioxidant capacity in the retinas compared with nondiabetic rats. Administration of IQ did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of NADPH oxidase enzyme activity and expressions of gp91phox, P47phox, and nitrated proteins and interaction between gp91phox and P47phox. In addition, IQ ameliorated diabetes-induced downregulation of total antioxidant capacity in the retina. CONCLUSION: PARP-1 inhibition by IQ protects diabetic retina from NADPH oxidase-derived oxidative stress. Thus, inhibition of PARP-1 could have potential therapeutic value in preventing the development of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus/enzimología , Isoquinolinas/farmacología , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Retina/efectos de los fármacos , Retina/metabolismo , Animales , Antioxidantes/metabolismo , Células Cultivadas , Humanos , Masculino , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/enzimología , Estreptozocina
14.
Ann Clin Lab Sci ; 48(2): 137-145, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29678838

RESUMEN

GOAL: To investigate the effects of blocking Rho kinase pathway on the expression of inflammatory signaling pathways in the retina of diabetic mice and in human retinal Müller glial cells stimulated with high-glucose to replicate hyperglycemia. PROCEDURES: Retinas from diabetic mice and human retinal Müller glial cells (MIO-M1) were studied. Western blot analysis, immunofluorescence, and enzyme-linked immunosorbent assay were utilized to study the effect of the Rho kinase inhibitor fasudil on the expression of Rho-associated protein kinase-1 (ROCK-1), extracellular signal-regulated kinases1&2(ERK ½), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1/CCL2). RESULTS: Treatment of human retinal Müller cells with high-glucose induced significant upregulation of ROCK-1, VEGF, and MCP-1/CCL2. Fasudil co-treatment normalized the high-glucose-induced upregulation of these mediators. Similarly, fasudil attenuated high-glucose-induced enhanced immunoreactivity for ROCK-1 and VEGF. Diabetes induced upregulation of ROCK-1, p-ERK ½, p-NF-κB and iNOS expression in retinas of mice. Constant fasudil intake from the onset of diabetes did not affect the metabolic status of diabetic mice but it attenuated diabetes-induced upregulation of these inflammatory signaling pathways. CONCLUSIONS: Our finding suggests that Rho-associated protein kinase-1 activation mediates regulation of inflammatory signaling pathways in diabetic retina.


Asunto(s)
Citocinas/metabolismo , Diabetes Mellitus Experimental/patología , Células Ependimogliales/metabolismo , Retina/patología , Quinasas Asociadas a rho/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Células Cultivadas , Quimiocina CCL2 , Modelos Animales de Enfermedad , Células Ependimogliales/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estadísticas no Paramétricas , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular , eIF-2 Quinasa/metabolismo
15.
Acta Ophthalmol ; 96(4): e460-e467, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29098793

RESUMEN

PURPOSE: 150-kDa oxygen-regulated protein (ORP150), a member of heat-shock protein family located in endoplasmic reticulum (ER), has a critical role in secretion of vascular endothelial growth factor (VEGF). We investigated expression levels of ORP150 and correlated these levels with VEGF and total vitreous antioxidant capacity (TAC) in proliferative diabetic retinopathy (PDR). We also examined expression of ORP150 in retinas of diabetic rats and in human retinal microvascular endothelial cells (HRMEC). METHODS: Vitreous samples from 40 PDR and 20 non-diabetic patients, epiretinal membranes from 14 patients with PDR, retinas of rats and HRMEC were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis. RESULTS: We showed a significant increase in expression of VEGF and ORP150 in vitreous samples from PDR patients compared with controls (p < 0.0001 for both comparisons). Total vitreous antioxidant capacity (TAC) levels were significantly lower in patients with PDR than those in controls (p < 0.0001). Vascular endothelial growth factor (VEGF) and ORP150 levels in PDR with active neovascularization were significantly higher than that in inactive PDR (p = 0.016; p = 0.011, respectively). A significant positive correlation was observed between levels of ORP150 and levels of VEGF (r = 0.42; p = 0.001). In epiretinal membranes, ORP150 was expressed in vascular endothelial cells and stromal cells. We also demonstrated colocalization of the nuclear cell proliferation marker Ki67 and ORP150 in endothelial cells of pathologic new blood vessels. 150-kDa oxygen-regulated protein (ORP150) levels were significantly increased in rat retinas after induction of diabetes. Vascular endothelial growth factor (VEGF) and the pro-inflammatory cytokines interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) induced upregulation of ORP150 in HRMEC. CONCLUSION: These results suggest a role for ORP150 in PDR angiogenesis.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética/genética , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Factor A de Crecimiento Endotelial Vascular/genética , Cuerpo Vítreo/metabolismo , Animales , Western Blotting , Células Cultivadas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Endotelio Vascular/patología , Ensayo de Inmunoadsorción Enzimática , Proteínas HSP70 de Choque Térmico/biosíntesis , Humanos , Inmunohistoquímica , Masculino , ARN/genética , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Retina/patología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Cuerpo Vítreo/patología
16.
Acta Ophthalmol ; 96(1): e27-e37, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28391660

RESUMEN

PURPOSE: Tissue inhibitors of metalloproteinases (TIMPs) block the catalysis by matrix metalloproteinases (MMPs) and have additional biologic activities, including regulation of cell growth and differentiation, apoptosis, angiogenesis and oncogenesis. We investigated the expression levels of all the four human TIMPs and correlated these levels with those of MMP-9 and vascular endothelial growth factor (VEGF) in proliferative diabetic retinopathy (PDR). METHODS: Vitreous samples from 38 PDR and 21 nondiabetic control patients and epiretinal membranes from 14 patients with PDR and 10 patients with proliferative vitreoretinopathy (PVR) were studied by enzyme-linked immunosorbent assay, Western blot analysis and immunohistochemistry. RESULTS: Tissue inhibitor of metalloproteinases-1, TIMP-4, MMP-9 and VEGF levels were significantly higher in vitreous samples from PDR patients than in nondiabetic controls (p < 0.0001 for all comparisons), whereas TIMP-2 and TIMP-3 levels did not differ significantly. TIMP-1, TIMP-4, MMP-9 and VEGF levels in PDR with active neovascularization were significantly higher than those in inactive PDR (p < 0.0001, 0.001, 0.013, 0.004, respectively). Significant positive correlations existed between levels of TIMP-1 and levels of TIMP-4 (r = 0.37; p = 0.004), MMP-9 (r = 0.65; p < 0.0001) and VEGF (r = 0.59; p < 0.0001), between levels of TIMP-4 and levels of MMP-9 (r = 0.61; p < 0.0001) and VEGF (r = 0.62; p < 0.0001) and between levels of MMP-9 and VEGF (r = 0.62; p < 0.0001). TIMP-1 and TIMP-3 were expressed in vascular endothelial cells in PDR epiretinal membranes and in myofibroblasts and leucocytes in PDR and PVR epiretinal membranes. CONCLUSION: The differential expression of TIMPs in PDR suggests that among the 4 TIMPs, TIMP-1 and TIMP-4 may be possible biomarkers of disease activity.


Asunto(s)
Retinopatía Diabética/metabolismo , Inhibidores Tisulares de Metaloproteinasas/biosíntesis , Vitreorretinopatía Proliferativa/metabolismo , Cuerpo Vítreo/metabolismo , Biomarcadores/metabolismo , Western Blotting , Retinopatía Diabética/complicaciones , Retinopatía Diabética/patología , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Índice de Severidad de la Enfermedad , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis , Inhibidor Tisular de Metaloproteinasa-3/biosíntesis , Vitreorretinopatía Proliferativa/etiología , Vitreorretinopatía Proliferativa/patología , Cuerpo Vítreo/cirugía , Inhibidor Tisular de Metaloproteinasa-4
17.
Ocul Immunol Inflamm ; 26(8): 1248-1260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28914577

RESUMEN

PURPOSE: We investigated the expression of the proinflammatory and proangiogenic factor osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and the receptor RANK in proliferative diabetic retinopathy (PDR). MATERIALS AND METHODS: Vitreous samples from PDR and nondiabetic control patients and epiretinal membranes from PDR patients were studied by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot analysis. RESULTS: Vascular endothelial growth factor, OPG, and soluble RANK levels in vitreous samples from PDR patients were significantly higher than that in nondiabetic controls. Soluble TRAIL levels were significantly lower in PDR patients than that in nondiabetic control, whereas soluble RANKL levels did not differ significantly. RANKL, RANK, and TRAIL were expressed in vascular endothelial cells, myofibroblasts, and CD45-expressing leukocytes in PDR epiretinal membranes. CONCLUSIONS: Dysregulated expression of OPG/RANKL/RANK pathway and TRAIL might be related to inflammation and angiogenesis in PDR.


Asunto(s)
Retinopatía Diabética/metabolismo , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Cuerpo Vítreo/metabolismo , Actinas/metabolismo , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Western Blotting , Retinopatía Diabética/patología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad
18.
Mol Vis ; 23: 853-871, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259392

RESUMEN

Purpose: We investigated the link among the proinflammatory cytokine high-mobility group box 1 (HMGB1) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a marker of oxidative DNA damage, the endothelial adhesion molecule and oxidase enzyme vascular adhesion protein-1 (VAP-1), and the inducible cytoprotective molecule heme oxygenase-1 (HO-1) in proliferative diabetic retinopathy (PDR). We correlated the levels of these molecules with clinical disease activity and studied the proinflammatory activities of HMGB1 on rat retinas and human retinal microvascular endothelial cells (HRMECs). Methods: Vitreous samples from 47 PDR and 19 non-diabetic patients, epiretinal membranes from 11 patients with PDR, human retinas (16 from diabetic patients and 16 from non-diabetic subjects), rat retinas, and HRMECs were studied by enzyme-linked immunosorbent assay, immunohistochemistry, western blot immunofluorescence, and RT-PCR analyses. In addition, we assessed the adherence of leukocytes to HMGB1-stimulated HRMECs. Results: HMGB1, 8-OHdG, and soluble VAP-1 (sVAP-1) levels were significantly higher in vitreous samples from PDR patients than in those from non-diabetics (p = 0.001, <0.0001, <0.0001, respectively). The HMGB1, 8-OHdG, sVAP-1, and HO-1 levels in PDR with active neovascularization were significantly higher than those in inactive PDR (p = 0.025, <0.0001, <0.0001, 0.012, respectively). Significant positive correlations were observed between the levels of HMGB1 and the levels of 8-OHdG (r = 0.422; p = 0.001) and sVAP-1 (r = 0.354; p = 0.004) and between the levels of 8-OHdG and the levels of sVAP-1 (r = 0.598; p<0.0001). In epiretinal membranes, VAP-1 and 8-OHdG were expressed in vascular endothelial cells and stromal cells. Significant increases in the VAP-1 mRNA and protein levels were detected in the RPE, but not in the neuroretina of diabetic patients. Treatment of HRMEC with HMGB1, diabetes induction, and an intravitreal injection of HMGB1 in normal rats induced a significant upregulation of the adhesion molecule intercellular adhesion molecule-1 (ICAM-1) in HRMECs and retinas. On the other hand, the expressions of vascular cell adhesion molecule-1 and VAP-1 were not affected. Oral administration of the HMGB1 inhibitor glycyrrhizin in rats attenuated the diabetes-induced upregulation of the retinal ICAM-1 expression. Treatment of HRMECs with HMGB1 increased leukocyte adhesion and induced the upregulation of 8-OHdG and HO-1 and the membranous translocation of VAP-1. Conclusions: Our results suggest a potential link among the proinflammatory cytokine HMGB1, VAP-1, oxidative stress, and HO-1 in the pathogenesis of PDR.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Moléculas de Adhesión Celular/metabolismo , Desoxiguanosina/análogos & derivados , Retinopatía Diabética/metabolismo , Proteína HMGB1/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , 8-Hidroxi-2'-Desoxicoguanosina , Adulto , Anciano , Amina Oxidasa (conteniendo Cobre)/genética , Animales , Biomarcadores/metabolismo , Western Blotting , Moléculas de Adhesión Celular/genética , Daño del ADN , Desoxiguanosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína HMGB1/farmacología , Hemo-Oxigenasa 1/genética , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Cuerpo Vítreo/metabolismo
19.
Invest Ophthalmol Vis Sci ; 58(7): 3189-3201, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28654984

RESUMEN

Purpose: Osteoprotegerin (OPG) is a novel regulator of endothelial cell function, angiogenesis, and vasculogenesis. We correlated expression levels of OPG with those of the angiogenic and inflammatory factors vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1/CCL2) in proliferative diabetic retinopathy (PDR). We also examined expression of OPG in retinas from diabetic rats and diabetic patients and measured production of OPG by human retinal microvascular endothelial cells (HRMEC) and investigated its angiogenic activity. Methods: Vitreous samples from 47 PDR and 28 nondiabetic patients, epiretinal membranes from 14 patients with PDR, human retinas (10 from diabetic patients and 10 from nondiabetic subjects), and rat retinas and HRMEC were studied by using enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, Western blot analysis, and RT-PCR. In vitro and in vivo angiogenesis assays were performed. Results: We showed a significant increase in the expression of OPG, VEGF, and MCP-1/CCL2 in a comparison between vitreous samples from PDR patients and those from nondiabetic controls. Significant positive correlations were found between levels of OPG and levels of VEGF and MCP-1/CCL2. In epiretinal membranes, OPG was expressed in vascular endothelial cells and stromal cells. Significant increases of OPG mRNA and protein were detected in the retinas from diabetic patients. The proinflammatory cytokines TNF-α and IL-1ß, but not VEGF, MCP-1/CCL2 or thrombin, induced upregulation of OPG in HRMEC. Osteoprotegerin induced ERK1/2 and Akt phosphorylation in HRMEC and stimulated their migration. Osteoprotegerin potentiated the angiogenic effect of VEGF in the in vivo protein gelatin plug assay. Conclusions: These results suggest that OPG is involved in PDR angiogenesis.


Asunto(s)
Retinopatía Diabética/metabolismo , Osteoprotegerina/metabolismo , Animales , Western Blotting , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental , Células Endoteliales/metabolismo , Membrana Epirretinal/metabolismo , Humanos , Inmunohistoquímica , Inflamación , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Neovascularización Retiniana/metabolismo , Vasos Retinianos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/metabolismo
20.
Ophthalmic Res ; 57(3): 150-160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27560926

RESUMEN

PURPOSE: The expression of high-mobility group box-1 (HMGB1) and signal transducer and activator of transcription-3 (STAT-3) is upregulated in the diabetic retina. We hypothesized that the activation of STAT-3 is under the control of HMGB1. METHODS: Retinas from 1-month-old diabetic rats and from normal rats intravitreally injected with HMGB1 and human retinal Müller glial cells (MIO-M1) stimulated with HMGB1 or high glucose were studied by Western blot analysis and immunofluorescence. We also studied the effect of the HMGB1 inhibitor glycyrrhizin (GA) on high-glucose-induced pSTAT-3 nuclear translocation and upregulation in Müller cells and on pSTAT-3 expression in the retinas of diabetic rats (n = 7-10 in each group). In addition, we studied the effect of STAT-3 inhibitor on the HMGB1-induced induction of vascular endothelial growth factor (VEGF) by Müller cells and human retinal microvascular endothelial cell (HRMEC) migration. RESULTS: Treatment of retinal Müller cells with recombinant HMGB1 induced nuclear translocation of pSTAT-3 but did not alter pSTAT-3 expression. High glucose induced a significant upregulation of HMGB1 and pSTAT-3 upregulation and nuclear translocation in retinal Müller cells. GA co-treatment normalized the high-glucose-induced upregulation of HMGB1 and pSTAT-3 upregulation and nuclear translocation in Müller cells. Intravitreal administration of HMGB1 in normal and diabetic rats upregulated pSTAT-3 expression in the retina. GA attenuated the diabetes-induced upregulation of pSTAT-3 in the retina. The STAT-3 inhibitor attenuated HMGB1-induced VEGF upregulation by Müller cells and HRMEC migration. CONCLUSIONS: The results suggest a role for HMGB1 in the modulation of STAT-3 expression in the diabetic retina.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Ependimogliales , Proteína HMGB1/fisiología , Retina/metabolismo , Factor de Transcripción STAT3/fisiología , Transducción de Señal , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Western Blotting , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Ácido Glicirrínico/farmacología , Proteína HMGB1/antagonistas & inhibidores , Proteína HMGB1/farmacología , Humanos , Ratas , Ratas Sprague-Dawley , Retina/citología , Retina/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA