RESUMEN
BACKGROUND: 1,2-propanediol (1,2-PDO) is widely used in the cosmetic, food, and drug industries with a worldwide consumption of over 1.5 million metric tons per year. Although efforts have been made to engineer microbial hosts such as Corynebacterium glutamicum to produce 1,2-PDO from renewable resources, the performance of such strains is still improvable to be competitive with existing petrochemical production routes. RESULTS: In this study, we enabled 1,2-PDO production in the genome-reduced strain C. glutamicum PC2 by introducing previously described modifications. The resulting strain showed reduced product formation but secreted 50 ± 1 mM D-lactate as byproduct. C. glutamicum PC2 lacks the D-lactate dehydrogenase which pointed to a yet unknown pathway relevant for 1,2-PDO production. Further analysis indicated that in C. glutamicum methylglyoxal, the precursor for 1,2-PDO synthesis, is detoxified with the antioxidant native mycothiol (MSH) by a glyoxalase-like system to lactoylmycothiol and converted to D-lactate which is rerouted into the central carbon metabolism at the level of pyruvate. Metabolomics of cell extracts of the empty vector-carrying wildtype, a 1,2-PDO producer and its derivative with inactive D-lactate dehydrogenase identified major mass peaks characteristic for lactoylmycothiol and its precursors MSH and glucosaminyl-myo-inositol, whereas the respective mass peaks were absent in a production strain with inactivated MSH synthesis. Deletion of mshA, encoding MSH synthase, in the 1,2-PDO producing strain C. glutamicum ΔhdpAΔldh(pEKEx3-mgsA-yqhD-gldA) improved the product yield by 56% to 0.53 ± 0.01 mM1,2-PDO mMglucose-1 which is the highest value for C. glutamicum reported so far. CONCLUSIONS: Genome reduced-strains are a useful basis to unravel metabolic constraints for strain engineering and disclosed in this study the pathway to detoxify methylglyoxal which represents a precursor for 1,2-PDO production. Subsequent inactivation of the competing pathway significantly improved the 1,2-PDO yield.
Asunto(s)
Corynebacterium glutamicum , Propilenglicol , Glicoles de Propileno , Propilenglicol/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Piruvaldehído/metabolismo , Lactatos/metabolismo , Ingeniería MetabólicaRESUMEN
BACKGROUND: Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity. Thus, the microbial production of industrially relevant chemicals such as FAL from second-generation feedstock is desirable. RESULTS: To engineer Corynebacterium glutamicum for FAL production, we deregulated fatty acid biosynthesis by deleting the transcriptional regulator gene fasR, overexpressing a fatty acyl-CoA reductase (FAR) gene of Marinobacter hydrocarbonoclasticus VT8 and attenuating the native thioesterase expression by exchange of the ATG to a weaker TTG start codon. C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) produced in shaking flasks 0.54 ± 0.02 gFAL L-1 from 20 g glucose L-1 with a product yield of 0.054 ± 0.001 Cmol Cmol-1. To enable xylose utilization, we integrated xylA encoding the xylose isomerase from Xanthomonas campestris and xylB encoding the native xylulose kinase into the locus of actA. This approach enabled growth on xylose. However, adaptive laboratory evolution (ALE) was required to improve the growth rate threefold to 0.11 ± 0.00 h-1. The genome of the evolved strain C. glutamicum gX was re-sequenced, and the evolved genetic module was introduced into C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) which allowed efficient growth and FAL production on wheat straw hydrolysate. FAL biosynthesis was further optimized by overexpression of the pntAB genes encoding the membrane-bound transhydrogenase of E. coli. The best-performing strain C. glutamicum ∆fasR cg2692TTG CgLP12::(Ptac-pntAB-TrrnB) gX (pEKEx2-maqu2220) produced 2.45 ± 0.09 gFAL L-1 with a product yield of 0.054 ± 0.005 Cmol Cmol-1 and a volumetric productivity of 0.109 ± 0.005 gFAL L-1 h-1 in a pulsed fed-batch cultivation using wheat straw hydrolysate. CONCLUSION: The combination of targeted metabolic engineering and ALE enabled efficient FAL production in C. glutamicum from wheat straw hydrolysate for the first time. Therefore, this study provides useful metabolic engineering principles to tailor this bacterium for other products from this second-generation feedstock.
RESUMEN
Pseudomonas carboxydohydrogena is a lithoautotrophic and obligate aerobic alphaproteobacterium, which has the unique ability to utilize CO, CO2, H2, and mixtures thereof as sole carbon and energy sources. Here, we report the complete genome sequence of type strain DSM 1083 and its close relation to Afipia carboxidovorans strain OM5.
RESUMEN
BACKGROUND: Itaconic acid is a promising platform chemical for a bio-based polymer industry. Today, itaconic acid is biotechnologically produced with Aspergillus terreus at industrial scale from sugars. The production of fuels but also of chemicals from food substrates is a dilemma since future processes should rely on carbon sources which do not compete for food or feed. Therefore, the production of chemicals from alternative substrates such as acetate is desirable to develop novel value chains in the bioeconomy. RESULTS: In this study, Corynebacterium glutamicum ATCC 13032 was engineered to efficiently produce itaconic acid from the non-food substrate acetate. Therefore, we rewired the central carbon and nitrogen metabolism by inactivating the transcriptional regulator RamB, reducing the activity of isocitrate dehydrogenase, deletion of the gdh gene encoding glutamate dehydrogenase and overexpression of cis-aconitate decarboxylase (CAD) from A. terreus optimized for expression in C. glutamicum. The final strain C. glutamicum ΔramB Δgdh IDHR453C (pEKEx2-malEcadopt) produced 3.43 ± 0.59 g itaconic acid L-1 with a product yield of 81 ± 9 mmol mol-1 during small-scale cultivations in nitrogen-limited minimal medium containing acetate as sole carbon and energy source. Lowering the cultivation temperature from 30 °C to 25 °C improved CAD activity and further increased the titer and product yield to 5.01 ± 0.67 g L-1 and 116 ± 15 mmol mol-1, respectively. The latter corresponds to 35% of the theoretical maximum and so far represents the highest product yield for acetate-based itaconic acid production. Further, the optimized strain C. glutamicum ΔramB Δgdh IDHR453C (pEKEx2-malEcadopt), produced 3.38 ± 0.28 g itaconic acid L-1 at 25 °C from an acetate-containing aqueous side-stream of fast pyrolysis. CONCLUSION: As shown in this study, acetate represents a suitable non-food carbon source for itaconic acid production with C. glutamicum. Tailoring the central carbon and nitrogen metabolism enabled the efficient production of itaconic acid from acetate and therefore this study offers useful design principles to genetically engineer C. glutamicum for other products from acetate.
RESUMEN
Transcriptional-translational coupling is accepted to be a fundamental mechanism of gene expression in prokaryotes and therefore has been analyzed in detail. However, the underlying genomic architecture of the expression machinery has not been well investigated so far. In this study, we established a bioinformatics pipeline to systematically investigated >1800 bacterial genomes for the abundance of transcriptional and translational associated genes clustered in distinct gene cassettes. We identified three highly frequent cassettes containing transcriptional and translational genes, i.e. rplk-nusG (gene cassette 1; in 553 genomes), rpoA-rplQ-rpsD-rpsK-rpsM (gene cassette 2; in 656 genomes) and nusA-infB (gene cassette 3; in 877 genomes). Interestingly, each of the three cassettes harbors a gene (nusG, rpsD and nusA) encoding a protein which links transcription and translation in bacteria. The analyses suggest an enrichment of these cassettes in pathogenic bacterial phyla with >70% for cassette 3 (i.e. Neisseria, Salmonella and Escherichia) and >50% for cassette 1 (i.e. Treponema, Prevotella, Leptospira and Fusobacterium) and cassette 2 (i.e. Helicobacter, Campylobacter, Treponema and Prevotella). These insights form the basis to analyze the transcriptional regulatory mechanisms orchestrating transcriptional-translational coupling and might open novel avenues for future biotechnological approaches.
RESUMEN
Aerobic carboxydotrophic bacteria are a group of microorganisms which possess the unique trait to oxidize carbon monoxide (CO) as sole energy source with molecular oxygen (O2) to produce carbon dioxide (CO2) which subsequently is used for biomass formation via the Calvin-Benson-Bassham cycle. Moreover, most carboxydotrophs are also able to oxidize hydrogen (H2) with hydrogenases to drive the reduction of carbon dioxide in the absence of CO. As several abundant industrial off-gases contain significant amounts of CO, CO2, H2 as well as O2, these bacteria come into focus for industrial application to produce chemicals and fuels from such gases in gas fermentation approaches. Since the group of carboxydotrophic bacteria is rather unknown and not very well investigated, we will provide an overview about their lifestyle and the underlying metabolic characteristics, introduce promising members for industrial application, and give an overview of available genetic engineering tools. We will point to limitations and discuss challenges, which have to be overcome to apply metabolic engineering approaches and to utilize aerobic carboxydotrophs in the industrial environment.
Asunto(s)
Biotecnología , Dióxido de Carbono , Bacterias/genética , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Gases/metabolismo , Hidrógeno/metabolismo , Ingeniería MetabólicaRESUMEN
Dynamic control of gene expression mainly relies on inducible systems, which require supplementation of (costly) inducer molecules. In contrast, synthetic regulatory circuits, which allow the timed shutdown of gene expression, are rarely available and therefore represent highly attractive tools for metabolic engineering. To achieve this, we utilized the VanR/P vanABK * regulatory system of Corynebacterium glutamicum, which consists of the transcriptional repressor VanR and a modified promoter of the vanABK operon (P vanABK *). VanR activity is modulated by one of the phenolic compounds ferulic acid, vanillin or vanillic acid, which are co-metabolized with d-glucose. Thus, gene expression in the presence of d-glucose is turned off if one of the effector molecules is depleted from the medium. To dynamically control the expression of the aceE gene, encoding the E1 subunit of the pyruvate dehydrogenase complex that is essential for growth on d-glucose, we replaced the native promoter by vanR/P vanABK * yielding C. glutamicum ΔP aceE ::vanR-P vanABK *. The biomass yield of this strain increased linearly with the supplemented amount of effector. After consumption of the phenolic compounds growth ceased, however, C. glutamicumΔP aceE ::vanR-P vanABK * continued to utilize the residual d-glucose to produce significant amounts of pyruvate, l-alanine, and l-valine. Interestingly, equimolar concentrations of the three phenolic compounds resulted in different biomass yields; and with increasing effector concentration, the product spectrum shifted from pyruvate over l-alanine to l-valine. To further test the suitability of the VanR/P vanABK * system, we overexpressed the l-valine biosynthesis genes ilvBNCE in C. glutamicum ΔP aceE ::vanR-P vanABK *, which resulted in efficient l-valine production with a yield of about 0.36 mol l-valine per mol d-glucose. These results demonstrate that the VanR/P vanABK * system is a valuable tool to control gene expression in C. glutamicum in a timed manner by the cheap and abundant phenolic compounds ferulic acid, vanillin, and vanillic acid.
RESUMEN
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a 'high-performance' strain from batch screening into a 'low-performance' strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.
Asunto(s)
Corynebacterium glutamicum , Bacillus subtilis , Hidrolasas de Éster Carboxílico , Corynebacterium glutamicum/genética , FusariumRESUMEN
Due to climate change and worldwide pollution, development of highly sustainable routes for industrial production of basic and specialty chemicals is critical nowadays. One possible approach is the use of CO2- and CO-utilizing microorganisms in biotechnological processes to produce value-added compounds from synthesis gas (mixtures of CO2, CO, and H2) or from C1-containing industrial waste gases. Such syngas fermentation processes have already been established, e.g., biofuel production using strictly anaerobic acetogenic bacteria. However, aerobic processes may be favorable for the formation of more costly (ATP-intensive) products. Oligotropha carboxidovorans strain OM5 is an aerobic carboxidotrophic bacterium and potentially a promising candidate for such processes. We here performed RNA-Seq analysis comparing cells of this organism grown heterotrophically with acetate or autotrophically with CO2, CO, and H2 as carbon and energy source and found a variety of chromosomally and of native plasmid-encoded genes to be highly differentially expressed. In particular, genes and gene clusters encoding proteins required for autotrophic growth (CO2 fixation via Calvin-Benson-Bassham cycle), for CO metabolism (CO dehydrogenase), and for H2 utilization (hydrogenase), all located on megaplasmid pHCG3, were much higher expressed during autotrophic growth with synthesis gas. Furthermore, we successfully established reproducible transformation of O. carboxidovoransvia electroporation and developed gene deletion and gene exchange protocols via two-step recombination, enabling inducible and stable expression of heterologous genes as well as construction of defined mutants of this organism. Thus, this study marks an important step toward metabolic engineering of O. carboxidovorans and effective utilization of C1-containing gases with this organism.
Asunto(s)
Bradyrhizobiaceae/genética , Gases/metabolismo , Genes Bacterianos , Ingeniería Genética/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Edición Génica , Hidrógeno/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Familia de Multigenes , Oxidorreductasas/genética , Oxidorreductasas/metabolismoRESUMEN
Gasification is a suitable technology to generate energy-rich synthesis gas (syngas) from biomass or waste streams, which can be utilized in bacterial fermentation processes for the production of chemicals and fuels. Established microbial processes currently rely on acetogenic bacteria which perform an energetically inefficient anaerobic CO oxidation and acetogenesis potentially hampering the biosynthesis of complex and ATP-intensive products. Since aerobic oxidation of CO is energetically more favorable, we exploit in this study the Gram-negative ß-proteobacterium Hydrogenophaga pseudoflava DSM1084 as novel host for the production of chemicals from syngas. We sequenced and annotated the genome of H. pseudoflava and established a genetic engineering toolbox, which allows markerless chromosomal modification via the pk19mobsacB system and heterologous gene expression on pBBRMCS2-based plasmids. The toolbox was extended by identifying strong endogenous promotors such as PgapA2 which proved to yield high expression under heterotrophic and autotrophic conditions. H. pseudoflava showed relatively fast heterotrophic growth in complex and minimal medium with sugars and organic acids which allows convenient handling in lab routines. In autotrophic bioreactor cultivations with syngas, H. pseudoflava exhibited a growth rate of 0.06 h-1 and biomass specific uptakes rates of 14.2⯱â¯0.3â¯mmol H2 gCDW-1 h-1, 73.9⯱â¯1.8â¯mmol CO gCDW-1 h-1, and 31.4⯱â¯0.3â¯mmol O2 gCDW-1 h-1. As proof of concept, we engineered the carboxydotrophic bacterium for the aerobic production of the C15 sesquiterpene (E)-α-bisabolene from the C1 carbon source syngas by heterologous expression of the (E)-α-bisabolene synthase gene agBIS. The resulting strain H. pseudoflava (pOCEx1:agBIS) produced 59⯱â¯8⯵g (E)-α-bisabolene L-1 with a volumetric productivity Qp of 1.2⯱â¯0.2⯵gâ¯L-1 h-1 and a biomass-specific productivity qp of 13.1⯱â¯0.6⯵g gCDW-1 h-1. The intrinsic properties and the genetic repertoire of H. pseudoflava make this carboxydotrophic bacterium a promising candidate for future aerobic production processes to synthesize more complex or ATP-intensive chemicals from syngas.
Asunto(s)
Reactores Biológicos , Monóxido de Carbono/metabolismo , Comamonadaceae , Genoma Bacteriano , Microorganismos Modificados Genéticamente , Sesquiterpenos Monocíclicos/metabolismo , Aerobiosis , Biomasa , Comamonadaceae/genética , Comamonadaceae/crecimiento & desarrollo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/crecimiento & desarrollo , Oxidación-ReducciónRESUMEN
BACKGROUND: A future bioeconomy relies on the development of technologies to convert waste into valuable compounds. We present here an attempt to design a biotechnological cascade for the conversion of vegetable waste into acetoin and electrical energy. RESULTS: A vegetable waste dark fermentation effluent containing mainly acetate, butyrate and propionate was oxidized in a bioelectrochemical system. The achieved average current at a constant anode potential of 0 mV against standard hydrogen electrode was 177.5 ± 52.5 µA/cm2. During this step, acetate and butyrate were removed from the effluent while propionate was the major remaining component of the total organic carbon content comprising on average 75.6%. The key players with regard to carbon oxidation and electrode reduction were revealed using amplicon sequencing and metatranscriptomic analysis. Using nanofiltration, it was possible to concentrate the propionate in the effluent. The effluent was revealed to be a suitable medium for biotechnological production strains. As a proof of principle, the propionate in the effluent of the bioelectrochemical system was converted into the platform chemical acetoin with a carbon recovery of 86%. CONCLUSIONS: To the best of our knowledge this is the first report on a full biotechnological production chain leading from vegetable waste to the production of a single valuable platform chemical that integrates carbon elimination steps leading to the production of the valuable side product electrical energy.
Asunto(s)
Biodegradación Ambiental , Verduras/microbiología , ElectricidadRESUMEN
Targeted top-down strategies for genome reduction are considered to have a high potential for providing robust basic strains for synthetic biology and industrial biotechnology. Recently, we created a library of 26 genome-reduced strains of Corynebacterium glutamicum carrying broad deletions in single gene clusters and showing wild-type-like biological fitness. Here, we proceeded with combinatorial deletions of these irrelevant gene clusters in two parallel orders, and the resulting library of 28 strains was characterized under various environmental conditions. The final chassis strain C1* carries a genome reduction of 13.4% (412 deleted genes) and shows wild-type-like growth behavior in defined medium with d-glucose as carbon and energy source. Moreover, C1* proves to be robust against several stresses (including oxygen limitation) and shows long-term growth stability under defined and complex medium conditions. In addition to providing a novel prokaryotic chassis strain, our results comprise a large strain library and a revised genome annotation list, which will be valuable sources for future systemic studies of C. glutamicum.
Asunto(s)
Biotecnología/métodos , Corynebacterium glutamicum/genética , Genoma Bacteriano , Biología Sintética/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Corynebacterium glutamicum/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Frecuencia de los Genes , Familia de Multigenes/genética , Fenotipo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol. RESULTS: In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B12-dependent diol dehydratase activity may be limiting 1-propanol production. CONCLUSIONS: Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time.
RESUMEN
For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application.
Asunto(s)
Corynebacterium glutamicum/crecimiento & desarrollo , Genes Esenciales , Genoma Bacteriano , Corynebacterium glutamicum/genética , Ingeniería Genética , Aptitud Genética , Familia de Multigenes , Filogenia , Eliminación de SecuenciaRESUMEN
Salvia divinorum--a species traditionally cultivated in Oaxaca, Mexico--possesses hallucinogenic properties. It is legally recognized as a controlled substance and prohibited in many countries. The proper identification of the plant, both in fresh and dried forms, is an important issue in crime-prevention campaigns. This paper provides a thorough anatomical description of leaves, petioles, and stems of S. divinorum. Detailed investigation of foliar trichomes was performed and illustrated. In addition, chromatographic analyses, including TLC and HPLC, were applied to fresh and dried plant material, together with the standard reference salvinorin A. A comprehensive identification method for S. divinorum based on a thorough anatomical examination is proposed, combined with chemical analysis for proper plant recognition.
Asunto(s)
Diterpenos de Tipo Clerodano/análisis , Salvia/anatomía & histología , Salvia/química , Calibración , Cromatografía Líquida de Alta Presión/normas , Cromatografía en Capa Delgada/normas , México , Fitoterapia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Tallos de la Planta/anatomía & histología , Tallos de la Planta/química , Plantas Medicinales , Estándares de Referencia , Salvia/clasificaciónRESUMEN
Locomotor sensitization induced by the dopamine agonist quinpirole can be potentiated by co-treatment with the synthetic kappa opioid agonist U69593. The identification of salvinorin A, an active component of the psychotropic sage Salvia divinorum, as a structurally different agonist of kappa-opioid receptors raised the question of whether this compound would similarly potentiate sensitization to quinpirole. Rats were co-treated with 0.5 mg/kg quinpirole and either salvinorin A (0.04, 0.4 or 2.0 mg/kg) or U69593 (0.3 mg/kg). Control groups were co-treated with vehicle and saline, vehicle and quinpirole (0.5 mg/kg), or saline and salvinorin A (0.4 mg/kg). Rats were injected biweekly for a total of 10 injections and locomotor activity measured after each treatment. Results showed that the highest dose of salvinorin A potentiated sensitization to quinpirole as did U69593, the middle salvinorin A dose had no effect on quinpirole sensitization, and the lowest dose of salvinorin A attenuated sensitization to quinpirole. These findings indicate that structural differences between salvinorin A and U69593 do not affect the potentiation of quinpirole sensitization. Moreover, the opposite effects of high and low salvinorin A doses suggest that salvinorin A can produce bidirectional modulation of sensitization to dopamine agonists.
Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Diterpenos de Tipo Clerodano/farmacología , Agonistas de Dopamina/farmacología , Actividad Motora/efectos de los fármacos , Quinpirol/farmacología , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Analgésicos/farmacología , Animales , Bencenoacetamidas/farmacología , Sistema Nervioso Central/metabolismo , Dopamina/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas/fisiología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Sinergismo Farmacológico , Masculino , Actividad Motora/fisiología , Pirrolidinas/farmacología , Ratas , Ratas Long-Evans , Receptores de Dopamina D2/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiologíaRESUMEN
Salvia divinorum is a natural occurring hallucinogen that is traditionally used by the Mazatec Indians of central Mexico. The diterpene salvinorin A was identified as an active component of S. divinorum over 20 years ago, but only recently has biochemical screening indicated that a molecular target of salvinorin A in vitro is the kappa-opioid receptor. We have examined whether salvinorin A, the C2-substituted derivative salvinorinyl-2-propionate, and salvinorin B can act as kappa-opioid receptor agonists in vivo. We found that following intracerebroventricular injection over a dose range of 1 to 30 microg of both salvinorin A and salvinorinyl-2-propionate produces antinociception in wild-type mice but not in a novel strain of kappa-opioid receptor knockout mice. Moreover, both salvinorin A and salvinorinyl-2-propionate reduce rectal body temperature, similar to conventional kappa-opioid receptor agonists, in a genotype-dependent manner. In addition, we determined that salvinorin A has high affinity for kappa 1- but not kappa 2-opioid receptors, demonstrating selectivity for this receptor subclass. Finally, treatment over the same dose range with salvinorin B, which is inactive in vitro, produced neither antinociceptive nor hypothermic effects in wild-type mice. These data demonstrate that salvinorin A is the active component of S. divinorum, selective for kappa(1)-opioid receptors, and that salvinorin A and specific structurally related analogs produce behavioral effects that require the kappa-opioid receptor.
Asunto(s)
Analgésicos no Narcóticos/farmacología , Analgésicos/farmacología , Diterpenos/farmacología , Receptores Opioides kappa/fisiología , Animales , Temperatura Corporal/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Clonación Molecular , ADN Complementario/biosíntesis , ADN Complementario/genética , Diterpenos/aislamiento & purificación , Diterpenos de Tipo Clerodano , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Inyecciones Intravenosas , Ratones , Ratones Noqueados , Mutación/fisiología , Dimensión del Dolor/efectos de los fármacos , Hojas de la Planta/química , Ensayo de Unión Radioligante , Receptores Opioides kappa/genética , Salvia/químicaRESUMEN
Salvinorin A, TRK-820 (17-cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-6beta-[N-methyl-trans-3-(3-furyl) acrylamido]morphinan hydrochloride), and 3FLB (diethyl 2,4-di-[3-fluorophenyl]-3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonane-9-one-1,5-dicarboxylate) are structurally distinctly different from U50,488H [(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate], the prototypic selective kappa agonist. Here, we investigated their in vitro pharmacological activities on receptors expressed in Chinese hamster ovary cells and in vivo antiscratch and antinociceptive activities in mice. All three compounds showed high selectivity for the kappa opioid receptor (KOR) over the mu opioid receptor (MOR) and delta opioid receptor (DOR) and nociceptin or orphanin FQ receptors. In the guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assay, all three were full agonists on the KOR. The rank order of affinity and potency for the KOR was TRK-820 >> U50,488H approximately salvinorin A >> 3FLB. TRK-820 acted as a partial agonist on MOR and DOR, whereas salvinorin A and 3FLB showed no activities on these receptors. Salvinorin A, TRK-820, and 3FLB caused internalization of the human KOR in a dose-dependent manner. Interestingly, although salvinorin A and U50,488H had similar potencies in stimulating [(35)S]GTPgammaS binding, salvinorin A was about 40-fold less potent than U50,488H in promoting internalization. Following 4-h incubation, all three compounds induced down-regulation of the human KOR, with salvinorin A causing a lower extent of down-regulation. Although TRK-820 was potent and efficacious against compound 48/80-induced scratching, salvinorin A showed low and inconsistent effects, and 3FLB was inactive. In addition, salvinorin A and 3FLB were not active in the acetic acid abdominal constriction test. The discrepancy between in vitro and in vivo results may be due to in vivo metabolism of salvinorin A and 3FLB and possibly to their effects on other pharmacological targets.
Asunto(s)
Compuestos Aza/farmacología , Diterpenos/farmacología , Hidrocarburos Fluorados/farmacología , Morfinanos/farmacología , Receptores Opioides kappa/metabolismo , Compuestos de Espiro/farmacología , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Analgésicos/farmacología , Animales , Antipruriginosos/farmacología , Unión Competitiva , Diterpenos de Tipo Clerodano , Regulación hacia Abajo/efectos de los fármacos , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Femenino , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Masculino , Ratones , Receptores Opioides/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/efectos de los fármacos , Receptores Opioides mu/metabolismo , Radioisótopos de Azufre , Receptor de NociceptinaRESUMEN
BACKGROUND AND AIMS: Salvia divinorum produces several closely related neoclerodane diterpenes. The most abundant of these, salvinorin A, is responsible for the psychoactive properties of the plant. To determine where these compounds occur in the plant, various organs, tissues and glandular secretions were chemically analysed. A microscopic survey of the S. divinorum plant was performed to examine the various types of trichomes present and to determine their distribution. METHODS: Chemical analyses were performed using thin layer chromatographic and histochemical techniques. Trichomes were examined using conventional light microscopy and scanning electron microscopy. KEY RESULTS: It was found that neoclerodane diterpenes are secreted as components of a resin that accumulates in peltate glandular trichomes, specifically in the subcuticular space that exists between the trichome head cells and the cuticle that encloses them. Four main types of trichomes were observed: peltate glandular trichomes, short-stalked capitate glandular trichomes, long-stalked capitate glandular trichomes and non-glandular trichomes. Their morphology and distribution is described. Peltate glandular trichomes were only found on the abaxial surfaces of the leaves, stems, rachises, bracts, pedicles and calyces. This was consistent with chemical analyses, which showed the presence of neoclerodane diterpenes in these organs, but not in parts of the plant where peltate glandular trichomes are absent. CONCLUSIONS: Salvinorin A and related compounds are secreted as components of a complex resin that accumulates in the subcuticular space of peltate glandular trichomes.
Asunto(s)
Diterpenos/química , Salvia/química , Cromatografía en Capa Delgada , Diterpenos de Tipo Clerodano , Microscopía Electrónica de Rastreo , Modelos Químicos , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/ultraestructura , Tallos de la Planta/química , Tallos de la Planta/ultraestructuraRESUMEN
The diterpene salvinorin A from Salvia divinorum has recently been reported to be a high-affinity and selective kappa-opioid receptor agonist (Roth et al., 2002). Salvinorin A and selected derivatives were found to be potent and efficacious agonists in several measures of agonist activity using cloned human kappa-opioid receptors expressed in human embryonic kidney-293 cells. Thus, salvinorin A, salvinorinyl-2-propionate, and salvinorinyl-2-heptanoate were found to be either full (salvinorin A) or partial (2-propionate, 2-heptanoate) agonists for inhibition of forskolin-stimulated cAMP production. Additional studies of agonist potency and efficacy of salvinorin A, performed by cotransfecting either the chimeric G proteins Gaq-i5 or the universal G protein Ga16 and quantification of agonist-evoked intracellular calcium mobilization, affirmed that salvinorin A was a potent and effective kappa-opioid agonist. Results from structure-function studies suggested that the nature of the substituent at the 2-position of salvinorin A was critical for kappa-opioid receptor binding and activation. Because issues of receptor reserve complicate estimates of agonist efficacy and potency, we also examined the agonist actions of salvinorin A by measuring potassium conductance through G protein-gated K(+) channels coexpressed in Xenopus oocytes, a system in which receptor reserve is minimal. Salvinorin A was found to be a full agonist, being significantly more efficacious than (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50488) or (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593) (two standard kappa-opioid agonists) and similar in efficacy to dynorphin A (the naturally occurring peptide ligand for kappa-opioid receptors). Salvinorin A thus represents the first known naturally occurring non-nitrogenous full agonist at kappa-opioid receptors.