Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cancer Res ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137399

RESUMEN

The pogo transposable element derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFß pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Whereas POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade.

2.
Redox Biol ; 75: 103276, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053265

RESUMEN

Metabolic rewiring is essential for tumor growth and progression to metastatic disease, yet little is known regarding how cancer cells modify their acquired metabolic programs in response to different metastatic microenvironments. We have previously shown that liver-metastatic breast cancer cells adopt an intrinsic metabolic program characterized by increased HIF-1α activity and dependence on glycolysis. Here, we confirm by in vivo stable isotope tracing analysis (SITA) that liver-metastatic breast cancer cells retain a glycolytic profile when grown as mammary tumors or liver metastases. However, hepatic metastases exhibit unique metabolic adaptations including elevated expression of genes involved in glutathione (GSH) biosynthesis and reactive oxygen species (ROS) detoxification when compared to mammary tumors. Accordingly, breast-cancer-liver-metastases exhibited enhanced de novo GSH synthesis. Confirming their increased capacity to mitigate ROS-mediated damage, liver metastases display reduced levels of 8-Oxo-2'-deoxyguanosine. Depletion of the catalytic subunit of the rate-limiting enzyme in glutathione biosynthesis, glutamate-cysteine ligase (GCLC), strongly reduced the capacity of breast cancer cells to form liver metastases, supporting the importance of these distinct metabolic adaptations. Loss of GCLC also affected the early steps of the metastatic cascade, leading to decreased numbers of circulating tumor cells (CTCs) and impaired metastasis to the liver and the lungs. Altogether, our results indicate that GSH metabolism could be targeted to prevent the dissemination of breast cancer cells.

3.
Mol Cancer Ther ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902871

RESUMEN

We have demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. Expression of Claudin-2 in primary CRC is associated with poor survival and is highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADCs) are promising anti-tumor therapeutics that combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Here we report the generation of twenty-eight anti-Claudin-2 antibodies for which the binding specificities, the cross-reactivity with Claudin family members and the cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or extracellular loop 2. Anti-Claudin-2 ADCs were efficiently internalized and effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Our results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing CRC liver-metastatic patients that present with replacement type liver metastases.

4.
Biomaterials ; 309: 122582, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38678699

RESUMEN

Cold atmospheric plasma (CAP) is a unique form of physical plasma that has shown great potential for cancer therapy. CAP uses ionized gas to induce lethal oxidative stress on cancer cells; however, the efficacy of CAP therapy continues to be improved. Here, we report an injectable hydrogel-mediated approach to enhance the anti-tumor efficacy of CAP by regulating the phosphorylation of eIF2α. We discovered that reactive oxygen and nitrogen species (ROS/RNS), two main anti-tumor components in CAP, can lead to lethal oxidative stress on tumor cells. Elevated oxidative stress subsequently induces eIF2α phosphorylation, a pathognomonic marker of immunogenic cell death (ICD). Trehalose, a natural disaccharide sugar, can further enhance CAP-induced ICD by elevating the phosphorylation of eIF2α. Moreover, injectable hydrogel-mediated delivery of CAP/trehalose treatment promoted dendritic cell (DC) maturation, initiating tumor-specific T-cell mediated anti-tumor immune responses. The combination therapy also supported the polarization of tumor-associated macrophages to an M1-like phenotype, reversing the immunosuppressive tumor microenvironment and promoting tumor antigen presentation to T cells. In combination with immune checkpoint inhibitors (i.e., anti-programmed cell death protein 1 antibody, aPD1), CAP/trehalose therapy further inhibited tumor growth. Importantly, our findings also indicated that this hydrogel-mediated local combination therapy engaged the host systemic innate and adaptive immune systems to impair the growth of distant tumors.


Asunto(s)
Gases em Plasma , Trehalosa , Trehalosa/química , Trehalosa/farmacología , Animales , Ratones , Línea Celular Tumoral , Humanos , Células Dendríticas/efectos de los fármacos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hidrogeles/química , Microambiente Tumoral/efectos de los fármacos , Femenino , Muerte Celular Inmunogénica/efectos de los fármacos , Fosforilación/efectos de los fármacos
5.
Front Oncol ; 14: 1320766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371623

RESUMEN

Tight junctions (TJs) are large intercellular adhesion complexes that maintain cell polarity in normal epithelia and endothelia. Claudins are critical components of TJs, forming homo- and heteromeric interaction between adjacent cells, which have emerged as key functional modulators of carcinogenesis and metastasis. Numerous epithelial-derived cancers display altered claudin expression patterns, and these aberrantly expressed claudins have been shown to regulate cancer cell proliferation/growth, metabolism, metastasis and cell stemness. Certain claudins can now be used as biomarkers to predict patient prognosis in a variety of solid cancers. Our understanding of the distinct roles played by claudins during the cancer progression has progressed significantly over the last decade and claudins are now being investigated as possible diagnostic markers and therapeutic targets. In this review, we will summarize recent progress in the use of antibody-based or related strategies for targeting claudins in cancer treatment. We first describe pre-clinical studies that have facilitated the development of neutralizing antibodies and antibody-drug-conjugates targeting Claudins (Claudins-1, -3, -4, -6 and 18.2). Next, we summarize clinical trials assessing the efficacy of antibodies targeting Claudin-6 or Claudin-18.2. Finally, emerging strategies for targeting Claudins, including Chimeric Antigen Receptor (CAR)-T cell therapy and Bi-specific T cell engagers (BiTEs), are also discussed.

6.
Redox Biol ; 70: 103028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211442

RESUMEN

Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Neoplasias de la Mama/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Estrés Oxidativo/fisiología , Fenotipo , Línea Celular Tumoral , Microambiente Tumoral
7.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232291

RESUMEN

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Asunto(s)
ARN Helicasas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , ARN Helicasas/genética , ARN Helicasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Ribosomas/metabolismo
8.
Neuro Oncol ; 26(6): 1052-1066, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38271182

RESUMEN

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.


Asunto(s)
Astrocitos , Neoplasias Encefálicas , Proteína 1 Similar a Quitinasa-3 , Invasividad Neoplásica , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/genética , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Ratones Transgénicos , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Células Tumorales Cultivadas
9.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039967

RESUMEN

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Asunto(s)
Trampas Extracelulares , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Citocinas , Trampas Extracelulares/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
10.
Cell Rep ; 42(10): 113191, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792528

RESUMEN

In solid tumors, drug concentrations decrease with distance from blood vessels. However, cellular adaptations accompanying the gradated exposure of cancer cells to drugs are largely unknown. Here, we modeled the spatiotemporal changes promoting chemotherapy resistance in breast cancer. Using pairwise cell competition assays at each step during the acquisition of chemoresistance, we reveal an important priming phase that renders cancer cells previously exposed to sublethal drug concentrations refractory to dose escalation. Therapy-resistant cells throughout the concentration gradient display higher expression of the solute carriers SLC38A7 and SLC46A1 and elevated intracellular concentrations of their associated metabolites. Reduced levels of SLC38A7 and SLC46A1 diminish the proliferative potential of cancer cells, and elevated expression of these SLCs in breast tumors from patients correlates with reduced survival. Our work provides mechanistic evidence to support dose-intensive treatment modalities for patients with solid tumors and reveals two members of the SLC family as potential actionable targets.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Animales , Humanos , Femenino , Resistencia a Antineoplásicos/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Mama/metabolismo , Transportador de Folato Acoplado a Protón
11.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313743

RESUMEN

The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Neoplásicas Circulantes/patología , Movimiento Celular/genética , Cadherinas , Metástasis de la Neoplasia
12.
Biomed Mater ; 18(4)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37220760

RESUMEN

Constant matrix remodeling and cellular heterogeneity in cancer are key contributors to its development and can profoundly alter treatment efficacy. Developingin-vitromodels containing relevant features that can recapitulate these aspects of the tumor microenvironment and that are well characterized can circumvent the limitations of conventional 2D cultures and animal models. Automated fabrication methods combined with biomimetic biomaterials have provided the opportunity to create platforms that can potentially incorporate a heterogeneous population of cells in a 3D environment that allows cell-cell and cell-ECM interactions with reproducibility. This study used 3D extrusion bioprinting and a composite bioink containing a reinforced decellularized extracellular matrix (ECM) hydrogel to fabricate a head and neck cancerin-vitromodel. The constituents of this model included fibroblasts and active ECM proteins to represent the stroma, along with HNSCC cells to represent the tumor component. The topographical characterization of the bioink showed a fibrous network with nanometer-sized pores. After cell encapsulation and model fabrication, we observed spheroid development and growth over time with cancer cells in the core and fibroblasts in the periphery. Our model is compatible with matrix metalloproteinase (MMP) quantification techniques and showed significant differences in the presence of MMP-9 and MMP-10 compared to the control groups. This characterized model is proposed as a tool for further translational and drug discovery applications since it provides a biomimetic scenario that allows the study of the tumor microenvironmentin-vitrousing nondestructive longitudinal monitoring over time.


Asunto(s)
Bioimpresión , Neoplasias , Animales , Andamios del Tejido , Ingeniería de Tejidos/métodos , Matriz Extracelular Descelularizada , Reproducibilidad de los Resultados , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Bioimpresión/métodos , Impresión Tridimensional , Microambiente Tumoral
13.
Nature ; 614(7948): 548-554, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725934

RESUMEN

Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution1-9. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/cirugía , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Pulmón/patología , Pulmón/cirugía , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Microambiente Tumoral/inmunología , Progresión de la Enfermedad , Aprendizaje Profundo , Pronóstico
14.
Nature ; 614(7948): 555-563, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725935

RESUMEN

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Asunto(s)
Neoplasias Encefálicas , Glioma , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Encéfalo/inmunología , Encéfalo/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Glioblastoma/inmunología , Glioblastoma/patología , Glioma/inmunología , Glioma/patología , Macrófagos/enzimología , Microambiente Tumoral/inmunología , Metástasis de la Neoplasia , Conjuntos de Datos como Asunto
15.
Neurooncol Adv ; 4(1): vdac141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284932

RESUMEN

Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.

16.
Oncogene ; 41(41): 4573-4590, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050467

RESUMEN

The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.


Asunto(s)
Glicoproteínas de Membrana , Neoplasias , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia de Inmunosupresión , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
17.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954339

RESUMEN

(1) Background: Squamous cell carcinoma (SCC) is one of the leading causes of cancer-related deaths worldwide. CD109 is overexpressed in many cancers including SCC. Although a pro-tumorigenic role for CD109 has been shown in non-SCC cancers, and in one type of SCC, the mechanisms and signaling pathways reported are discrepant. (2) Methods: The CD109-EGFR interaction and CD109-mediated regulation of EGFR expression, signaling, and stemness were studied using microarray, immunoblot, immunoprecipitation, qPCR, immunofluorescence, and/or spheroid formation assays. The role of CD109 in tumor progression and metastasis was studied using xenograft tumor growth and metastatic models. (3) Results: We establish the in vivo tumorigenicity of CD109 in vulvar SCC cells and demonstrate that CD109 is an essential regulator of EGFR expression at the mRNA and protein levels and of EGFR/AKT signaling in vulvar and hypopharyngeal SCC cells. Furthermore, we show that the mechanism involves EGFR-CD109 heteromerization and colocalization, leading to the stabilization of EGFR levels. Additionally, we demonstrate that the maintenance of epithelial morphology and in vitro tumorigenicity of SCC cells require CD109 localization to the cell surface. (4) Conclusions: Our study identifies an essential role for CD109 in vulvar SCC progression. We demonstrate that CD109 regulates SCC cellular stemness and epithelial morphology via a cell-surface CD109-EGFR interaction, stabilization of EGFR levels and EGFR/AKT signaling.

18.
Br J Cancer ; 127(6): 988-1013, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35650276

RESUMEN

The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017. Since then, numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastases from various tumour types and are starting to shed light on the biology of the distinct HGPs. In the present guidelines, we give an overview of these studies, discuss novel strategies for predicting the HGPs of liver metastases, such as deep-learning algorithms for whole-slide histopathology images and medical imaging, and highlight liver metastasis animal models that exhibit features of the different HGPs. Based on a pooled analysis of large cohorts of patients with liver-metastatic colorectal cancer, we propose a new cut-off to categorise patients according to the HGPs. An up-to-date standard method for HGP assessment within liver metastases is also presented with the aim of incorporating HGPs into the decision-making processes surrounding the treatment of patients with liver-metastatic cancer. Finally, we propose hypotheses on the cellular and molecular mechanisms that drive the biology of the different HGPs, opening some exciting preclinical and clinical research perspectives.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/patología
19.
Cell Rep ; 39(1): 110634, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385748

RESUMEN

Although combination BRAF/MEK inhibition has produced significant survival benefits for BRAF p.V600 mutant melanomas, targeted therapies approved for BRAF non-p.V600 mutant melanomas remain limited. Through the analysis of 772 cutaneous melanoma exomes, we reveal that BRAF non-p.V600 mutations co-occurs more frequently with NF1 loss, but not with oncogenic NRAS mutations, than expected by chance. We present cell signaling data, which demonstrate that BRAF non-p.V600 mutants can signal as monomers and dimers within an NF1 loss context. Concordantly, BRAF inhibitors that inhibit both monomeric and dimeric BRAF synergize with MEK inhibition to significantly reduce cell viability in vitro and tumor growth in vivo in BRAF non-p.V600 mutant melanomas with co-occurring NF1 loss-of-function mutations. Our data suggest that patients harboring BRAF non-p.V600 mutant melanomas may benefit from current FDA-approved BRAF/MEK inhibitor combination therapy currently reserved for BRAF p.V600 mutant patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética
20.
Oncogene ; 41(12): 1701-1717, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35110681

RESUMEN

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Anticuerpos Monoclonales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Inmunoconjugados/efectos adversos , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA