Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Toxics ; 10(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35051070

RESUMEN

The WHO classified air pollution as a human lung carcinogen and polycyclic aromatic hydrocarbons (PAHs) are components of both indoor (e.g., tobacco smoke and cookstoves) and outdoor (e.g., wildfires and industrial and vehicle emissions) air pollution, thus a human health concern. However, few studies have evaluated the adverse effects of low molecular weight (LMW) PAHs, the most abundant PAHs in the environment. We hypothesized that LMW PAHs combined with the carcinogenic PAH benzo[a]pyrene (B[a]P) act as co-carcinogens in human lung epithelial cell lines (BEAS-2B and A549). Therefore, in this paper, we evaluate several endpoints, such as micronuclei, gap junctional intercellular communication (GJIC) activity, cell cycle analysis, anti-BPDE-DNA adduct formation, and cytotoxicity after mixed exposures of LMW PAHs with B[a]P. The individual PAH doses used for each endpoint did not elicit cytotoxicity nor cell death and were relevant to human exposures. The addition of a binary mixture of LMW PAHs (fluoranthene and 1-methylanthracene) to B[a]P treated cells resulted in significant increases in micronuclei formation, dysregulation of GJIC, and changes in cell cycle as compared to cells treated with either B[a]P or the binary mixture alone. In addition, anti-BPDE-DNA adducts were significantly increased in human lung cells treated with B[a]P combined with the binary mixture of LMW PAHs as compared to cells treated with B[a]P alone, further supporting the increased co-carcinogenic potential by LMW PAHs. Collectively, these novel studies using LMW PAHs provide evidence of adverse pulmonary effects that should warrant further investigation.

2.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287860

RESUMEN

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Nanofibras/toxicidad , Nanotubos de Carbono/toxicidad , Contaminantes Atmosféricos/química , Daño del ADN , Células Epiteliales , Humanos , Exposición por Inhalación , Nanofibras/química , Nanotubos de Carbono/química , Tamaño de la Partícula , Propiedades de Superficie , Estados Unidos
3.
Part Fibre Toxicol ; 16(1): 36, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31590690

RESUMEN

BACKGROUND: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). RESULTS: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 µg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 µg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 µg/mL MWCNT-HT & ND. CONCLUSIONS: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de los fármacos , Calor , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Nitrógeno/química , Ciclo Celular , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Epiteliales/patología , Humanos , Pulmón/patología , Nanotubos de Carbono/química , Tamaño de la Partícula , Propiedades de Superficie
4.
Toxicol Sci ; 169(1): 180-193, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690640

RESUMEN

Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are under regulated environmental contaminants (eg, secondhand smoke) that lead to gap junction dysregulation, p38 MAPK activation, and increased mRNA production of inflammatory mediators, such as cytokines and cyclooxygenase (COX2), in lung epithelial cells. However, the early mechanisms involving lipid signaling through the arachidonic acid pathway and subsequent eicosanoid production leading to these downstream events are not known. Common human exposures are to mixtures of LMW PAHs, thus C10 cells (a mouse lung epithelial cell line) were exposed to a representative binary PAH mixture, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), for 30 min-24 h with and without p38 and cytosolic phospholipase A2 (cPLA2) inhibitors. Cytosolic phospholipase A2 inhibition reversed PAH-induced phospho-p38 MAPK activation and gap junction dysregulation at 30 min. A significant biphasic increase in cPLA2 protein was observed at 30 min, 2, and 4 h, as well as COX2 protein at 2 and 8 h. Untargeted metabolomics demonstrated a similar trend with significantly changing metabolites at 30 min and 4 h of exposure relative to 1 h; a "cPLA2-like" subset of metabolites within the biphasic response were predominately phospholipids. Targeted metabolomics showed several eicosanoids (eg, prostaglandin D2 (PGD2), PGE2α) were significantly increased at 4, 8, and 12 h following exposure to the binary PAH mixture and this effect was p38-dependent. Finally, PAH metabolism was not observed until after 8 h. These results indicate an early lipid signaling mechanism of LMW PAH toxicity in lung epithelial cells due to parent PAH compounds.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Antracenos/toxicidad , Eicosanoides/metabolismo , Fluorenos/toxicidad , Transducción de Señal/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Antracenos/química , Línea Celular , Ciclooxigenasa 2/metabolismo , Activación Enzimática , Fluorenos/química , Fosfolipasas A2 Grupo IV/metabolismo , Metabolómica , Ratones Endogámicos BALB C , Peso Molecular , Fosforilación , Factores de Tiempo , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Arch Toxicol ; 92(3): 1311-1322, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29170806

RESUMEN

Low molecular weight (LMW) polycyclic aromatic hydrocarbons (PAH) are the most abundant PAHs environmentally, occupationally, and are in cigarette smoke; however, little is known about their carcinogenic potential. We hypothesized that LMW PAHs act as co-carcinogens in the presence of a known carcinogen (benzo[a]pyrene (B[a]P)) in a mouse non-tumorigenic type II cell line (C10 cells). Gap junctions are commonly suppressed and inflammation induced during tumor promotion, while DNA-adduct formation is observed during the initiation stage of cancer. We used these endpoints together as markers of carcinogenicity in these lung adenocarcinoma progenitor cells. LMW PAHs (1-methylanthracene and fluoranthene, 1-10 µM total in a 1:1 ratio) were used based on previous studies as well as B[a]P (0-3 µM) as the classic carcinogen; non-cytotoxic doses were used. B[a]P-induced inhibition of gap junctional intercellular communication (GJIC) was observed at low doses and further reduced in the presence of the LMW PAH mixture (P < 0.05), supporting a role for GJIC suppression in cancer development. Benzo[a]pyrene diol-epoxide (BPDE)-DNA adduct levels were significantly induced in B[a]P-treated C10 cells and additionally increased with the LMW PAH mixture (P < 0.05). Significant increases in cyclooxygenase (Cox-2) were observed in response to the B[a]P/LMW PAH mixture combinations. DNA adduct formation coincided with the inhibition of GJIC and increase in Cox-2 mRNA expression. Significant cytochrome p4501b1 increases and connexin 43 decreases in gene expression were also observed. These studies suggest that LMW PAHs in combination with B[a]P can elicit increased carcinogenic potential. Future studies will further address the mechanisms of co-carcinogenesis driving these responses.


Asunto(s)
Carcinógenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Animales , Antracenos/toxicidad , Benzo(a)pireno/toxicidad , Línea Celular , Conexina 43/genética , Conexina 43/metabolismo , Ciclooxigenasa 2/genética , Citocromo P-450 CYP1B1/genética , Aductos de ADN , Células Epiteliales/efectos de los fármacos , Fluorenos/toxicidad , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/patología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Hidrocarburos Policíclicos Aromáticos/química , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología
6.
ACS Nano ; 11(9): 8849-8863, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28759202

RESUMEN

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.


Asunto(s)
Nanotubos de Carbono/toxicidad , Exposición Profesional/efectos adversos , Aerosoles/química , Aerosoles/toxicidad , Animales , Humanos , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Mutágenos/química , Mutágenos/toxicidad , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Polímeros/química , Polímeros/toxicidad
7.
Part Fibre Toxicol ; 11: 6, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24479647

RESUMEN

Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 µg/cm² MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 µm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.


Asunto(s)
Mutágenos , Nanotubos de Carbono/toxicidad , Exposición Profesional , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Cromosomas/efectos de los fármacos , Daño del ADN , Monitoreo del Ambiente , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Citometría de Flujo , Humanos , Hibridación Fluorescente in Situ , Microscopía de Fuerza Atómica , Mitosis/efectos de los fármacos , Espectrometría por Rayos X , Espectrometría Raman , Huso Acromático/efectos de los fármacos , Células Madre
8.
Part Fibre Toxicol ; 11: 3, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405760

RESUMEN

BACKGROUND: Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 µg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS: Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS: These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 µg/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT.


Asunto(s)
Adenocarcinoma/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Nanotubos de Carbono/toxicidad , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adenoma/inducido químicamente , Adenoma/patología , Animales , Líquido del Lavado Bronquioalveolar/citología , Técnica del Anticuerpo Fluorescente , Hiperplasia/inducido químicamente , Hiperplasia/patología , Exposición por Inhalación , Pulmón/patología , Neoplasias Pulmonares/patología , Mesotelioma/inducido químicamente , Mesotelioma/patología , Ratones , Ratones Endogámicos , Microscopía de Polarización , Infiltración Neutrófila/efectos de los fármacos , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA