Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chemistry ; 16(21): 6346-51, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20401877

RESUMEN

Multichromophoric boron-dipyrromethene (Bodipy) dyes synthesized on phenylene-ethynylene platforms have been be converted to energy transfer cassettes in a one-step chemical transformation. Excitation energy transfer processes in these highly symmetrical derivatives were studied in detail, including time-resolved fluorescence spectroscopy techniques. Excitation spectra and the emission lifetimes suggest efficient energy transfer between the donor and acceptor chromophore. These novel energy transfer cassettes, while highlighting a short-cut approach to similar energy transfer systems, could be useful as large pseudo-Stokes shift multichromophoric dyes with potential applications in diverse applications.

2.
Org Lett ; 10(16): 3401-3, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18613696

RESUMEN

Two novel distyryl-boradiazaindacene dyes with dimethylaminostyryl and pyridylethenyl substituents display opposite spectral shifts on protonation with TFA in organic solvents. This bidirectional switching of the dyes can be shown to be directly related to ICT donor and acceptor characteristics of the substituents attached to the BODIPY core. The observed spectral response of these dyes could be very useful in the design of novel NIR fluorescent ratiometric probes for pH.

3.
Inorg Chem ; 45(18): 7339-47, 2006 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-16933936

RESUMEN

The complex [7,10-mu-H-7-CO-7,7-(PPh3)2-isonido-7,8,9-ReC2B7H9] has been synthesized by treatment of the complex salt [NHMe3][3,3-Cl2-3,3-(CO)2-closo-3,1,2-ReC2B9H11] with PPh3 in refluxing THF (tetrahydrofuran) and isolated as intensely colored orange-red microcrystals. Spectroscopic NMR and IR data have suggested that the product has a highly asymmetric structure with two inequivalent PPh3 ligands and a single CO ligand. Measurement of 11B NMR spectra in particular have indicated seven distinct boron vertexes, although the resulting cage degradation by removal of two BH vertexes was confirmed only following X-ray crystallographic analysis, which revealed the pentadecahedral isonido-7,8,9-ReC2B7 architecture. The 11B NMR resonances span an enormous chemical shift range (Deltadelta = 113), and this appears to be a direct consequence of the deshielding of the boron vertex directly opposite the quadrilateral |ReCCB| aperture. The new complex has been shown by electrochemical measurements to undergo a reversible one-electron oxidation. Digitally simulated cyclic voltammograms support a proposed square scheme (E(1/2) = 0.58, 0.69 V vs ferrocene) involving a reversible isonido-closo transition of the metallacarborane cage. Most unusually for a metallacarborane complex, ambient temperature solutions in CH2Cl2 and DMF have been shown to be intensely turquoise-blue fluorescent (lambda(em) = 442 nm, Phi = 0.012). Fluorescence spectroscopy measurements in MeTHF (2-methyltetrahydrofuran) glass at 77 K have indicated that the likely cause of such a broad emission is dual fluorescence (lambda(em) = 404, 505 nm), with both emissions displaying vibronic structure. Following excited-state lifetime decay analysis, the emissive behavior has been accredited to metal-perturbed 1IL states, with the lower energy emission arising from a slight geometric distortion of the initially excited complex.


Asunto(s)
Compuestos de Boro/química , Compuestos Organometálicos/química , Fosfinas/química , Renio/química , Compuestos de Boro/síntesis química , Cristalografía por Rayos X , Fluorescencia , Ligandos , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Oxidación-Reducción , Factores de Tiempo
4.
J Phys Chem A ; 109(9): 1785-94, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16833507

RESUMEN

Hydrogen bonds were shown to play an important role in the lumichrome photophysics and photochemistry both in solutions and in the solid state. In solutions, lumichrome can form hydrogen-bonded complexes with a variety of molecules, such as acetic acid or methanol, as supported by spectral and equilibrium studies. Photoexcitation of some hydrogen-bonded complexes, having appropriate configuration, as in the case of acetic acid, may lead to excited-state proton transfer, resulting in formation of the isoalloxazinic structure, detectable by its characteristic emission, distinct from that of the intrinsically alloxazinic lumichrome. Theoretical calculations confirmed the role of the hydrogen-bonded complexes, yielding several stable eight-membered cyclic structures of such complexes characterized by spectral changes similar to those observed experimentally. Hydrogen bonds play an essential role in the formation of the lumichrome crystal structure, as follows from the X-ray diffraction results. Interestingly, the crystals studied included molecules of methanol used as solvent in crystal growth. The emission studies of polycrystalline samples, similar to the processes occurring in solutions, point to the importance of hydrogen-bonding interactions in crystal packing allowed by the symmetry of the hydrogen-bonded dimers.

5.
Cell Biochem Biophys ; 40(2): 115-22, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15054218

RESUMEN

Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain 2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin (HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V, and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined. Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting the conformational flexibility of subdomain 2A.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Albúmina Sérica/análisis , Albúmina Sérica/química , Espectrometría de Fluorescencia/métodos , Triptófano/análisis , Triptófano/química , Sustitución de Aminoácidos , Sitios de Unión , Simulación por Computador , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Relación Estructura-Actividad
6.
Protein Sci ; 12(7): 1507-21, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12824496

RESUMEN

The effects of deimination (conversion of arginyl to citrullinyl residues) of myelin basic protein (MBP) on its binding to calmodulin (CaM) have been examined. Four species of MBP were investigated: unmodified recombinant murine MBP (rmMBP-Cit(0)), an engineered protein with six quasi-citrullinyl (i.e., glutaminyl) residues per molecule (rmMBP-qCit(6)), human component C1 (hMBP-Cit(0)), and human component C8 (hMBP-Cit(6)), both obtained from a patient with multiple sclerosis (MS). Both rmMBP-Cit(0) and hMBP-Cit(0) bound CaM in a Ca(2+)-dependent manner and primarily in a 1:1 stoichiometry, which was verified by dynamic light scattering. Circular dichroic spectroscopy was unable to detect any changes in secondary structure in MBP upon CaM-binding. Inherent Trp fluorescence spectroscopy and a single-site binding model were used to determine the dissociation constants: K(d) = 144 +/- 76 nM for rmMBP-Cit(0), and K(d) = 42 +/- 15 nM for hMBP-Cit(0). For rmMBP-qCit(6) and hMBP-Cit(6), the changes in fluorescence were suggestive of a two-site interaction, although the dissociation constants could not be accurately determined. These results can be explained by a local conformational change induced in MBP by deimination, exposing a second binding site with a weaker association with CaM, or by the existence of several conformers of deiminated MBP. Titration with the collisional quencher acrylamide, and steady-state and lifetime measurements of the fluorescence at 340 nm, showed both dynamic and static components to the quenching, and differences between the unmodified and deiminated proteins that were also consistent with a local conformational change due to deimination.


Asunto(s)
Calcio/química , Calmodulina/química , Proteína Básica de Mielina/química , Acrilamidas/química , Secuencia de Aminoácidos , Animales , Cationes Bivalentes , Dicroismo Circular , Citrulina/química , Humanos , Datos de Secuencia Molecular , Esclerosis Múltiple/metabolismo , Proteína Básica de Mielina/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Dispersión de Radiación , Espectrometría de Fluorescencia
7.
Photochem Photobiol Sci ; 1(9): 715-20, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12665311

RESUMEN

We report the UV-Vis absorption, fluorescence and transient absorption spectra of selected methylalloxazines adsorbed on cellulose from a polar solvent. The ground-state properties of these probe molecules in the cellulose matrix are similar to those in polar protic solvents. Fluorescence decay data allowed identification of three emitting species for every molecule studied, excluding 1-methyllumichrome which lacks the capacity to rearrange into an isoalloxazinic form. The short-lived emission component was attributed to the neutral form of the molecule, and the two longer-lived components were assigned to the two distinct deprotonated monoanionic forms resulting from dissociation at the respective N(3) and N(1) nitrogen atoms. The two monoanions coexist due to their very similar pKa, values. Transient absorption experiments detected two species created by the laser pulse in these systems. The short-lived species was identified as the triplet excited state, and the long-lived species as the semireduced radical, formed by hydrogen atom or proton transfer from the glycosidic unit to the alloxazine carbonyl group.


Asunto(s)
Celulosa/química , Flavinas/química , Cinética , Modelos Moleculares , Conformación Molecular , Fotoquímica , Fotólisis , Espectrometría de Fluorescencia , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA