Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sci Rep ; 14(1): 8508, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605095

RESUMEN

Leukemias are genetically heterogeneous and diagnostics therefore includes various standard-of-care (SOC) techniques, including karyotyping, SNP-array and FISH. Optical genome mapping (OGM) may replace these as it detects different types of structural aberrations simultaneously and additionally detects much smaller aberrations (500 bp vs 5-10 Mb with karyotyping). However, its resolution may still be too low to define clinical relevance of aberrations when they are located between two OGM labels or when labels are not distinct enough. Here, we test the potential of Cas9-directed long-read sequencing (LRS) as an additional technique to resolve such potentially relevant new findings. From an internal Bionano implementation study we selected ten OGM calls that could not be validated with SOC methods. Per variant we designed crRNAs for Cas9 enrichment, prepared libraries and sequenced them on a MinION/GridION device. We could confirm all aberrations and, importantly, the actual breakpoints of the OGM calls were located between 0.2 and 5.5 kb of the OGM-estimated breakpoints, confirming the high reliability of OGM. Furthermore, we show examples of redefinition of aberrations between labels that enable judgment of clinical relevance. Our results suggest that Cas9-directed LRS can be a relevant and flexible secondary technique in diagnostic workflows including OGM.


Asunto(s)
Sistemas CRISPR-Cas , Leucemia , Humanos , Reproducibilidad de los Resultados , Cariotipificación , Mapeo Cromosómico
2.
Int J Neonatal Screen ; 10(1)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535124

RESUMEN

In this study, we compare next-generation sequencing (NGS) approaches (targeted panel (tNGS), whole exome sequencing (WES), and whole genome sequencing (WGS)) for application in newborn screening (NBS). DNA was extracted from dried blood spots (DBS) from 50 patients with genetically confirmed inherited metabolic disorders (IMDs) and 50 control samples. One hundred IMD-related genes were analyzed. Two data-filtering strategies were applied: one to detect only (likely) pathogenic ((L)P) variants, and one to detect (L)P variants in combination with variants of unknown significance (VUS). The variants were filtered and interpreted, defining true/false positives (TP/FP) and true/false negatives (TN/FN). The variant filtering strategies were assessed in a background cohort (BC) of 4833 individuals. Reliable results were obtained within 5 days. TP results (47 patient samples) for tNGS, WES, and WGS results were 33, 31, and 30, respectively, using the (L)P filtering, and 40, 40, and 38, respectively, when including VUS. FN results were 11, 13, and 14, respectively, excluding VUS, and 4, 4, and 6, when including VUS. The remaining FN were mainly samples with a homozygous VUS. All controls were TN. Three BC individuals showed a homozygous (L)P variant, all related to a variable, mild phenotype. The use of NGS-based workflows in NBS seems promising, although more knowledge of data handling, automated variant interpretation, and costs is needed before implementation.

3.
Neurol Genet ; 9(1): e200050, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058854

RESUMEN

Background and Objectives: The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders generally caused by single nucleotide variants (SNVs) or indels in coding regions or by repeat expansions in coding and noncoding regions of SCA genes. Copy number variants (CNVs) have now also been reported for 3 genes-ITPR1, FGF14, and SPTBN2-but not all SCA genes have been screened for CNVs as the underlying cause of the disease in patients. In this study, we aim to assess the prevalence of CNVs encompassing 36 known SCA genes. Methods: A cohort of patients with cerebellar ataxia who were referred to the University Medical Center Groningen for SCA genetic diagnostics was selected for this study. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed using the Infinium Global Screening Array. Following data processing, genotyping data were uploaded into NxClinical software to perform CNV analysis per patient and to visualize identified CNVs in 36 genes with allocated SCA symbols. The clinical relevance of detected CNVs was determined using evidence from studies based on PubMed literature searches for similar CNVs and phenotypic features. Results: Of the 338 patients with cerebellar ataxia, we identified putative clinically relevant CNV deletions in 3 patients: an identical deletion encompassing ITPR1 in 2 patients, who turned out to be related, and a deletion involving PPP2R2B in another patient. Although the CNV deletion in ITPR1 was clearly the underlying cause of SCA15 in the 2 related patients, the clinical significance of the deletion in PPP2R2B remained unknown. Discussion: We showed that CNVs detectable with the limited resolution of SNP array are a very rare cause of SCA. Nevertheless, we suggest adding CNV analysis alongside SNV analysis to SCA gene diagnostics using next-generation sequencing approaches, at least for ITPR1, to improve the genetic diagnostics for patients.

4.
Gene ; 851: 146984, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36270459

RESUMEN

BACKGROUND: Splice prediction algorithms currently used in routine DNA diagnostics have limited sensitivity and specificity, therefore many potential splice variants are classified as variants of uncertain significance (VUSs). However, functional assessment of VUSs to test splicing is labour-intensive and time-consuming. We developed a decision tree to prioritise potential splice variants for functional studies and functionally verified the outcome of the decision tree. MATERIALS AND METHODS: We built the decision tree, SEPT-GD, by setting thresholds for the splice prediction programs implemented in Alamut. A set of 343 variants with known effects on splicing was used as control for sensitivity and specificity. We tested SEPT-GD using variants from a Dutch cardiomyopathy cohort of 2002 patients that were previously classified as VUS and predicted to have a splice effect according to diagnostic rules. We then selected 12 VUSs ranked by SEPT-GD to functionally verify the predicted effect on splicing using a minigene assay: 10 variants predicted to have a strong effect and 2 with a weak effect. RT-PCR was performed for nine variants. Variant classification was re-evaluated based on the functional test outcome. RESULTS: Compared to similar individually tested algorithms, SEPT-GD shows higher sensitivity (91 %) and comparable specificity (88 %) for both consensus (dinucleotides at the start and end of the intron, GT at the 5' end and AG at the 3' end) and non-consensus splice-site variants (excluding middle of exon variants). Using clinical diagnostic criteria, 1295 unique variants in our cardiomyopathy cohort had originally been classified as VUSs, with 57 predicted by Alamut to have an effect on splicing. Using SEPT-GD, we prioritised 31 variants in 40 patients. In the minigene assay, all 12 variants showed results concordant with SEPT-GD predictions. RT-PCR confirmed the minigene results for two variants, TMEM43 c.1000 + 5G > T and TTN c.25922-6 T > G. Based on all outcomes, the SGCD c.4-1G > A and CSRP3 c.282-5_285del variants were reclassified as likely pathogenic. CONCLUSION: SEPT-GD outperforms the tools commonly used for RNA splicing prediction and improves prioritisation of variants in cardiomyopathy genes for functional splicing analysis in a diagnostic setting.


Asunto(s)
Cardiomiopatías , Sitios de Empalme de ARN , Humanos , Sitios de Empalme de ARN/genética , Árboles de Decisión , Variación Genética , Empalme del ARN , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética
5.
Front Genet ; 13: 782685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401678

RESUMEN

Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.

6.
Int J Neonatal Screen ; 8(1)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323196

RESUMEN

Newborn screening (NBS) aims to identify neonates with severe conditions for whom immediate treatment is required. Currently, a biochemistry-first approach is used to identify these disorders, which are predominantly inherited meta1bolic disorders (IMD). Next-generation sequencing (NGS) is expected to have some advantages over the current approach, for example the ability to detect IMDs that meet all screening criteria but lack an identifiable biochemical footprint. We have now designed a technical study to explore the use of NGS techniques as a first-tier approach in NBS. Here, we describe the aim and set-up of the NGS-first for the NBS (NGSf4NBS) project, which will proceed in three steps. In Step 1, we will identify IMDs eligible for NGS-first testing, based on treatability. In Step 2, we will investigate the feasibility, limitations and comparability of different technical NGS approaches and analysis workflows for NBS, eventually aiming to develop a rapid NGS-based workflow. Finally, in Step 3, we will prepare for the incorporation of this workflow into the existing Dutch NBS program and propose a protocol for referral of a child after a positive NGS test result. The results of this study will be the basis for an additional analytical route within NBS that will be further studied for its applicability within the NBS program, e.g., regarding the ethical, legal, financial and social implications.

7.
Front Genet ; 13: 824510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299955

RESUMEN

Background: In the molecular genetic diagnostics of Mendelian disorders, solutions are needed for the major challenge of dealing with the large number of variants of uncertain significance (VUSs) identified using next-generation sequencing (NGS). Recently, promising approaches using constraint metrics to calculate case excess scores (CE), etiological fractions (EF), and gnomAD-derived constraint scores have been reported that estimate the likelihood of rare variants in specific genes or regions that are pathogenic. Our objective is to study the usability of these constraint data into variant interpretation in a diagnostic setting, using our cardiomyopathy cohort. Methods and Results: Patients (N = 2002) referred for clinical genetic diagnostics underwent NGS testing of 55-61 genes associated with cardiomyopathies. Previously classified likely pathogenic (LP) and pathogenic (P) variants were used to validate the use of data from CE, EF, and gnomAD constraint analyses for (re)classification of associated variant types in specific cardiomyopathy subtype-related genes. The classifications corroborated in 94% (354/378) of cases. Next, we reclassified 23 unique VUSs to LP, increasing the diagnostic yield by 1.2%. In addition, 106 unique VUSs (5.3% of patients) were prioritized for co-segregation or functional analyses. Conclusions: Our analysis confirms that the use of constraint metrics data can improve variant interpretation, and we, therefore, recommend using constraint scores on other cohorts and disorders and its inclusion in variant interpretation protocols.

8.
Front Pediatr ; 9: 600556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136434

RESUMEN

Background: Genetic disorders are a substantial cause of infant morbidity and mortality and are frequently suspected in neonatal intensive care units. Non-specific clinical presentation or limitations to physical examination can result in a plethora of genetic testing techniques, without clear strategies on test ordering. Here, we review our 2-years experiences of rapid genetic testing of NICU patients in order to provide such recommendations. Methods: We retrospectively included all patients admitted to the NICU who received clinical genetic consultation and genetic testing in our University hospital. We documented reasons for referral for genetic consultation, presenting phenotypes, differential diagnoses, genetic testing requested and their outcomes, as well as the consequences of each (rapid) genetic diagnostic approach. We calculated diagnostic yield and turnaround times (TATs). Results: Of 171 included infants that received genetic consultation 140 underwent genetic testing. As a result of testing as first tier, 13/14 patients received a genetic diagnosis from QF-PCR; 14/115 from SNP-array; 12/89 from NGS testing, of whom 4/46 were diagnosed with a small gene panel and 8/43 with a large OMIM-morbid based gene panel. Subsequent secondary or tertiary analysis and/or additional testing resulted in five more diagnoses. TATs ranged from 1 day (QF-PCR) to a median of 14 for NGS and SNP-array testing, with increasing TAT in particular when many consecutive tests were performed. Incidental findings were detected in 5/140 tested patients (3.6%). Conclusion: We recommend implementing a broad NGS gene panel in combination with CNV calling as the first tier of genetic testing for NICU patients given the often unspecific phenotypes of ill infants and the high yield of this large panel.

9.
Prenat Diagn ; 41(10): 1351-1359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34176145

RESUMEN

OBJECTIVE: To evaluate if non-invasive prenatal testing (NIPT) affects livebirth (LB) prevalence of Down syndrome (DS) in the Netherlands. METHOD: Data from clinical genetics laboratories and the Working Party on Prenatal Diagnosis and Therapy (2014-2018) and previous published data (1991-2013) were used to assess trends for DS LB prevalence and reduction percentage (the net decrease in DS LBs resulting from selective termination of pregnancies). Statistics Netherlands provided general population data. RESULTS: DS LB prevalence increased from 11.6/10,000 in 1991 to 15.9/10,000 in 2002 (regression coefficient 0.246 [95% CI: 0.105-0.388; p = 0.003]). After 2002, LB prevalence decreased to 11.3/10,000 in 2014 and further to 9.9/10,000 in 2018 (regression coefficient 0.234 (95% CI: -0.338 to -0.131; p < 0.001). The reduction percentage increased from 26% in 1991 to 55.2% in 2018 (regression coefficient 0.012 (95% CI: 0.010-0.013; p < 0.001)). There were no trend changes after introducing NIPT as second-tier (2014) and first-tier test (2017). CONCLUSIONS: Introducing NIPT did not change the decreasing trend in DS LB prevalence and increasing trend in reduction percentage. These trends may be caused by a broader development of more prenatal testing that had already started before introducing NIPT.


Asunto(s)
Síndrome de Down/diagnóstico por imagen , Pruebas Prenatales no Invasivas/normas , Adulto , Síndrome de Down/epidemiología , Femenino , Humanos , Nacimiento Vivo/epidemiología , Nacimiento Vivo/genética , Países Bajos/epidemiología , Pruebas Prenatales no Invasivas/métodos , Pruebas Prenatales no Invasivas/estadística & datos numéricos , Embarazo , Prevalencia , Sistema de Registros/estadística & datos numéricos
10.
Int J Cardiol ; 332: 99-104, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662488

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES: Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS: Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS: A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION: The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible.


Asunto(s)
Cardiomiopatías , Secuenciación de Nucleótidos de Alto Rendimiento , Cardiomiopatías/diagnóstico , Cardiomiopatías/epidemiología , Cardiomiopatías/genética , Variaciones en el Número de Copia de ADN , Pruebas Genéticas , Humanos
11.
Clin Chem ; 66(12): 1521-1530, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257979

RESUMEN

BACKGROUND: Patients with hematological malignancies (HMs) carry a wide range of chromosomal and molecular abnormalities that impact their prognosis and treatment. Since no current technique can detect all relevant abnormalities, technique(s) are chosen depending on the reason for referral, and abnormalities can be missed. We tested targeted transcriptome sequencing as a single platform to detect all relevant abnormalities and compared it to current techniques. MATERIAL AND METHODS: We performed RNA-sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in bone marrow from 136 patients with a primary diagnosis of HM. We then applied machine learning to expression profile data to perform leukemia classification, a method we named RANKING. Gene fusions for all the genes in the panel were detected, and overexpression of the genes EVI1, CCND1, and BCL2 was quantified. Single nucleotide variants/indels were analyzed in acute myeloid leukemia (AML), myelodysplastic syndrome and patients with acute lymphoblastic leukemia (ALL) using a virtual myeloid (54 genes) or lymphoid panel (72 genes). RESULTS: RANKING correctly predicted the leukemia classification of all AML and ALL samples and improved classification in 3 patients. Compared to current methods, only one variant was missed, c.2447A>T in KIT (RT-PCR at 10-4), and BCL2 overexpression was not seen due to a t(14; 18)(q32; q21) in 2% of the cells. Our RNA-sequencing method also identified 6 additional fusion genes and overexpression of CCND1 due to a t(11; 14)(q13; q32) in 2 samples. CONCLUSIONS: Our combination of targeted RNA-sequencing and data analysis workflow can improve the detection of relevant variants, and expression patterns can assist in establishing HM classification.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Neoplasias Hematológicas/genética , Humanos , Leucemia Mieloide Aguda/genética , Nucleótidos , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN , Translocación Genética
12.
Genome Med ; 12(1): 75, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831124

RESUMEN

Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice .


Asunto(s)
Biología Computacional/métodos , Exoma , Variación Genética , Programas Informáticos , Frecuencia de los Genes , Estudios de Asociación Genética/métodos , Humanos , Mutación INDEL , Aprendizaje Automático , Técnicas de Diagnóstico Molecular , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Curva ROC , Reproducibilidad de los Resultados
13.
Clin Chem ; 66(8): 1084-1092, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32613252

RESUMEN

BACKGROUND: Measuring minimal residual disease (MRD), the persistence of leukemic cells after treatment, is important for monitoring leukemia recurrence. The current methods for monitoring MRD are flow cytometry, to assess aberrant immune phenotypes, and digital droplet PCR (ddPCR), to target genetic aberrations such as single-nucleotide variants and gene fusions. We present the performance of an RNA-based next-generation sequencing (NGS) method for MRD gene fusion detection compared with ddPCR. This method may have advantages, including the capacity to analyze different genetic aberrations and patients in 1 experiment. In particular, detection at the RNA level may be highly sensitive if the genetic aberration is highly expressed. METHODS: We designed a probe-based NGS panel targeting the breakpoints of 11 fusion genes previously identified in clinical patients and 2 fusion genes present in cell lines. Blocking probes were added to prevent nonspecific enrichment. Each patient RNA sample was diluted in background RNA, depleted for rRNA and globin mRNA, converted to cDNA, and prepared for sequencing. Unique sequence reads, identified by unique molecular identifiers, were aligned directly to reference transcripts. The same patient and cell-line samples were also analyzed with ddPCR for direct comparison. RESULTS: Our NGS method reached a maximum sensitivity of 1 aberrant cell in 10 000 cells and was mostly within a factor of 10 compared with ddPCR. CONCLUSIONS: Our detection limit was below the threshold of 1:1000 recommended by European Leukemia Net. Further optimizations are easy to implement and are expected to boost the sensitivity of our method to diagnostically obtained ddPCR thresholds.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia/diagnóstico , Proteínas de Fusión Oncogénica/genética , ARN/análisis , Humanos , Límite de Detección , Neoplasia Residual , ARN/genética
14.
Prenat Diagn ; 40(10): 1300-1309, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32627857

RESUMEN

OBJECTIVE: Conventional genetic tests (quantitative fluorescent-PCR [QF-PCR] and single nucleotide polymorphism-array) only diagnose ~40% of fetuses showing ultrasound abnormalities. Rapid exome sequencing (rES) may improve this diagnostic yield, but includes challenges such as uncertainties in fetal phenotyping, variant interpretation, incidental unsolicited findings, and rapid turnaround times. In this study, we implemented rES in prenatal care to increase diagnostic yield. METHODS: We prospectively studied 55 fetuses. Inclusion criteria were: (a) two or more independent major fetal anomalies, (b) hydrops fetalis or bilateral renal cysts alone, or (c) one major fetal anomaly and a first-degree relative with the same anomaly. In addition to conventional genetic tests, we performed trio rES analysis using a custom virtual gene panel of ~3850 Online Mendelian Inheritance in Man (OMIM) genes. RESULTS: We established a genetic rES-based diagnosis in 8 out of 23 fetuses (35%) without QF-PCR or array abnormalities. Diagnoses included MIRAGE (SAMD9), Zellweger (PEX1), Walker-Warburg (POMGNT1), Noonan (PTNP11), Kabuki (KMT2D), and CHARGE (CHD7) syndrome and two cases of Osteogenesis Imperfecta type 2 (COL1A1). In six cases, rES diagnosis aided perinatal management. The median turnaround time was 14 (range 8-20) days. CONCLUSION: Implementing rES as a routine test in the prenatal setting is challenging but technically feasible, with a promising diagnostic yield and significant clinical relevance.


Asunto(s)
Anomalías Múltiples/diagnóstico , Secuenciación del Exoma , Diagnóstico Prenatal/métodos , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Adulto , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Estudios de Factibilidad , Femenino , Feto/diagnóstico por imagen , Pruebas Genéticas/métodos , Pruebas Genéticas/estadística & datos numéricos , Humanos , Recién Nacido , Masculino , Países Bajos/epidemiología , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Valor Predictivo de las Pruebas , Embarazo , Resultado del Embarazo/epidemiología , Diagnóstico Prenatal/estadística & datos numéricos , Estudios Prospectivos , Ultrasonografía Prenatal
15.
J Med Genet ; 57(9): 581-589, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32303604

RESUMEN

We present key points from the updated Dutch-Flemish guideline on comprehensive diagnostics in disorders/differences of sex development (DSD) that have not been widely addressed in the current (inter)national literature. These points are of interest to physicians working in DSD (expert) centres and to professionals who come across persons with a DSD but have no (or limited) experience in this area. The Dutch-Flemish guideline is based on internationally accepted principles. Recent initiatives striving for uniform high-quality care across Europe, and beyond, such as the completed COST action 1303 and the European Reference Network for rare endocrine conditions (EndoERN), have generated several excellent papers covering nearly all aspects of DSD. The Dutch-Flemish guideline follows these international consensus papers and covers a number of other topics relevant to daily practice. For instance, although next-generation sequencing (NGS)-based molecular diagnostics are becoming the gold standard for genetic evaluation, it can be difficult to prove variant causality or relate the genotype to the clinical presentation. Network formation and centralisation are essential to promote functional studies that assess the effects of genetic variants and to the correct histological assessment of gonadal material from DSD patients, as well as allowing for maximisation of expertise and possible cost reductions. The Dutch-Flemish guidelines uniquely address three aspects of DSD. First, we propose an algorithm for counselling and diagnostic evaluation when a DSD is suspected prenatally, a clinical situation that is becoming more common. Referral to ultrasound sonographers and obstetricians who are part of a DSD team is increasingly important here. Second, we pay special attention to healthcare professionals not working within a DSD centre as they are often the first to diagnose or suspect a DSD, but are not regularly exposed to DSDs and may have limited experience. Their thoughtful communication to patients, carers and colleagues, and the accessibility of protocols for first-line management and efficient referral are essential. Careful communication in the prenatal to neonatal period and the adolescent to adult transition are equally important and relatively under-reported in the literature. Third, we discuss the timing of (NGS-based) molecular diagnostics in the initial workup of new patients and in people with a diagnosis made solely on clinical grounds or those who had earlier genetic testing that is not compatible with current state-of-the-art diagnostics.


Asunto(s)
Trastornos del Desarrollo Sexual/diagnóstico , Patología Molecular , Enfermedades Raras/diagnóstico , Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/epidemiología , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/patología , Europa (Continente) , Femenino , Pruebas Genéticas/tendencias , Guías como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Embarazo , Enfermedades Raras/epidemiología , Enfermedades Raras/genética , Enfermedades Raras/patología
16.
Adv Genet (Hoboken) ; 1(1): e10023, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619248

RESUMEN

Despite an explosive growth of next-generation sequencing data, genome diagnostics only provides a molecular diagnosis to a minority of patients. Software tools that prioritize genes based on patient symptoms using known gene-disease associations may complement variant filtering and interpretation to increase chances of success. However, many of these tools cannot be used in practice because they are embedded within variant prioritization algorithms, or exist as remote services that cannot be relied upon or are unacceptable because of legal/ethical barriers. In addition, many tools are not designed for command-line usage, closed-source, abandoned, or unavailable. We present Variant Interpretation using Biomedical literature Evidence (VIBE), a tool to prioritize disease genes based on Human Phenotype Ontology codes. VIBE is a locally installed executable that ensures operational availability and is built upon DisGeNET-RDF, a comprehensive knowledge platform containing gene-disease associations mostly from literature and variant-disease associations mostly from curated source databases. VIBE's command-line interface and output are designed for easy incorporation into bioinformatic pipelines that annotate and prioritize variants for further clinical interpretation. We evaluate VIBE in a benchmark based on 305 patient cases alongside seven other tools. Our results demonstrate that VIBE offers consistent performance with few cases missed, but we also find high complementarity among all tested tools. VIBE is a powerful, free, open source and locally installable solution for prioritizing genes based on patient symptoms. Project source code, documentation, benchmark and executables are available at https://github.com/molgenis/vibe.

17.
Am J Hum Genet ; 105(6): 1091-1101, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31708118

RESUMEN

The Netherlands launched a nationwide implementation study on non-invasive prenatal testing (NIPT) as a first-tier test offered to all pregnant women. This started on April 1, 2017 as the TRIDENT-2 study, licensed by the Dutch Ministry of Health. In the first year, NIPT was performed in 73,239 pregnancies (42% of all pregnancies), 7,239 (4%) chose first-trimester combined testing, and 54% did not participate. The number of trisomies 21 (239, 0.33%), 18 (49, 0.07%), and 13 (55, 0.08%) found in this study is comparable to earlier studies, but the Positive Predictive Values (PPV)-96% for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13-were higher than expected. Findings other than trisomy 21, 18, or 13 were reported on request of the pregnant women; 78% of women chose to have these reported. The number of additional findings was 207 (0.36%); these included other trisomies (101, 0.18%, PPV 6%, many of the remaining 94% of cases are likely confined placental mosaics and possibly clinically significant), structural chromosomal aberrations (95, 0.16%, PPV 32%,) and complex abnormal profiles indicative of maternal malignancies (11, 0.02%, PPV 64%). The implementation of genome-wide NIPT is under debate because the benefits of detecting other fetal chromosomal aberrations must be balanced against the risks of discordant positives, parental anxiety, and a potential increase in (invasive) diagnostic procedures. Our first-year data, including clinical data and laboratory follow-up data, will fuel this debate. Furthermore, we describe how NIPT can successfully be embedded into a national screening program with a single chain for prenatal care including counseling, testing, and follow-up.


Asunto(s)
Síndrome de Down/diagnóstico , Pruebas Genéticas/métodos , Genoma Humano , Implementación de Plan de Salud , Diagnóstico Prenatal/métodos , Síndrome de la Trisomía 13/diagnóstico , Síndrome de la Trisomía 18/diagnóstico , Adolescente , Adulto , Aberraciones Cromosómicas , Síndrome de Down/epidemiología , Síndrome de Down/genética , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Países Bajos/epidemiología , Embarazo , Primer Trimestre del Embarazo , Pronóstico , Síndrome de la Trisomía 13/epidemiología , Síndrome de la Trisomía 13/genética , Síndrome de la Trisomía 18/epidemiología , Síndrome de la Trisomía 18/genética , Adulto Joven
18.
Nat Commun ; 10(1): 2837, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253775

RESUMEN

The diagnostic yield of exome and genome sequencing remains low (8-70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Análisis de Secuencia de ARN/métodos , Transcriptoma , Bases de Datos de Ácidos Nucleicos , Humanos , Modelos Genéticos , Análisis de Componente Principal , Programas Informáticos , Interfaz Usuario-Computador
19.
BMC Bioinformatics ; 19(1): 531, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558531

RESUMEN

BACKGROUND: Various algorithms have been developed to predict fetal trisomies using cell-free DNA in non-invasive prenatal testing (NIPT). As basis for prediction, a control group of non-trisomy samples is needed. Prediction accuracy is dependent on the characteristics of this group and can be improved by reducing variability between samples and by ensuring the control group is representative for the sample analyzed. RESULTS: NIPTeR is an open-source R Package that enables fast NIPT analysis and simple but flexible workflow creation, including variation reduction, trisomy prediction algorithms and quality control. This broad range of functions allows users to account for variability in NIPT data, calculate control group statistics and predict the presence of trisomies. CONCLUSION: NIPTeR supports laboratories processing next-generation sequencing data for NIPT in assessing data quality and determining whether a fetal trisomy is present. NIPTeR is available under the GNU LGPL v3 license and can be freely downloaded from https://github.com/molgenis/NIPTeR or CRAN.


Asunto(s)
Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Diagnóstico Prenatal/métodos , Trisomía/diagnóstico , Femenino , Humanos , Pruebas de Detección del Suero Materno , Valor Predictivo de las Pruebas , Embarazo
20.
Clin Chem ; 64(7): 1096-1103, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29794109

RESUMEN

BACKGROUND: Over 500 translocations have been identified in acute leukemia. To detect them, most diagnostic laboratories use karyotyping, fluorescent in situ hybridization, and reverse transcription PCR. Targeted locus amplification (TLA), a technique using next-generation sequencing, now allows detection of the translocation partner of a specific gene, regardless of its chromosomal origin. We present a TLA multiplex assay as a potential first-tier screening test for detecting translocations in leukemia diagnostics. METHODS: The panel includes 17 genes involved in many translocations present in acute leukemias. Procedures were optimized by using a training set of cell line dilutions and 17 leukemia patient bone marrow samples and validated by using a test set of cell line dilutions and a further 19 patient bone marrow samples. Per gene, we determined if its region was involved in a translocation and, if so, the translocation partner. To balance sensitivity and specificity, we introduced a gray zone showing indeterminate translocation calls needing confirmation. We benchmarked our method against results from the 3 standard diagnostic tests. RESULTS: In patient samples passing QC, we achieved a concordance with benchmarking tests of 81% in the training set and 100% in the test set, after confirmation of 4 and nullification of 3 gray zone calls (in total). In cell line dilutions, we detected translocations in 10% aberrant cells at several genetic loci. CONCLUSIONS: Multiplex TLA shows promising results as an acute leukemia screening test. It can detect cryptic and other translocations in selected genes. Further optimization may make this assay suitable for diagnostic use.


Asunto(s)
Pruebas Genéticas/métodos , Leucemia/genética , Translocación Genética , Enfermedad Aguda , Células Cultivadas , Humanos , Cariotipificación , Leucemia/diagnóstico , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA