RESUMEN
KEY MESSAGE: Cytokinin together with MdoBRR1, MdoBRR8 and MdoBRR10 genes participate in the downregulation of MdoDAM1, contributing to the transition from endo- to ecodormancy in apple buds. The final step of cytokinin (CK) signaling pathway culminates in the activation of type-B response regulators (BRRs), important transcriptional factors in the modulation of CK-responsive genes. In this study, we performed a genome-wide analysis aiming to identify apple BRR family members and understand their involvement in bud dormancy control. The investigation identified ten MdoBRR protein-coding genes. A higher expression of three MdoBRR (MdoBRR1, MdoBRR9 and MdoBRR10) was observed in dormant buds in comparison to other developmental stages. Interestingly, in ecodormant buds these three MdoBRR genes were upregulated in a CK-dependent manner. Transcription profiles, determined during dormancy cycle under field and artificially controlled conditions, revealed that MdoBRR1 and MdoBRR8 played important roles in the transition from endo- to ecodormancy, probably mediated by endogenous CK stimuli. The expression of MdoBRR7, MdoBRR9, and MdoBRR10 was induced in ecodormant buds exposed to warm temperatures, indicating a putative role in growth resumption after chilling requirement fulfillment. Contrasting expression patternsin vivo between MdoBRRs and MdoDAM1, an essential dormancy establishment regulator, were observed during dormancy cycle and in CK-treated buds. Thereafter, in vivo transactivation assays showed that CK stimuli combined with transient overexpression of MdoBRR1, MdoBRR8, and MdoBRR10 resulted in downregulation of the reporter gene gusA driven by the MdoDAM1 promoter. These pieces of evidences point to the integration of CK-triggered responses through MdoBRRs that are able to downregulate MdoDAM1, contributing to dormancy release in apple.
Asunto(s)
Citocininas/fisiología , Malus/fisiología , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Arabidopsis/genética , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas , Malus/efectos de los fármacos , Malus/crecimiento & desarrollo , Filogenia , Latencia en las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas GenéticamenteRESUMEN
KEY MESSAGE: MdoDHN11 acts in the nucellus layer to protect the embryo and the endosperm from limited water availability during apple seed development. Dehydrins (DHNs) are protective proteins related to several plant developmental responses that involve dehydration such as seed desiccation and abiotic stresses. In apple (Malus × domestica Borkh.), the seed-specific MdoDHN11 was suggested to play important roles against dehydration during seed development. However, this hypothesis has not yet been evaluated. Within this context, several experiments were performed to functionally characterize MdoDHN11. In situ hybridization analysis during apple seed development showed that MdoDHN11 expression is confined to a maternal tissue called nucellus, a central mass of parenchyma between the endosperm and the testa. The MdoDHN11 protein was localized in the cytosol and nucleus. Finally, transgenic Arabidopsis plants expressing MdoDHN11 were generated and exposed to a severe water-deficit stress, aiming to mimic a situation that can occurs during seed development. All transgenic lines showed increased tolerance to water deficit in relation to wild-type plants. Taken together, our results provide evidences that MdoDHN11 plays important roles during apple seed development by protecting the embryo and the endosperm from limited water availability, and the mechanism of action probably involves the interaction of MdoDHN11 with proteins and other components in the cell.
Asunto(s)
Malus/genética , Proteínas de Plantas/metabolismo , Agua/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Deshidratación , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/fisiología , Expresión Génica , Malus/crecimiento & desarrollo , Malus/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiologíaRESUMEN
BACKGROUND: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. RESULTS: We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. CONCLUSIONS: The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.
Asunto(s)
Proteínas Fúngicas/genética , Genoma Fúngico , Metarhizium/genética , Animales , Hibridación Genómica Comparativa , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Metarhizium/clasificación , Filogenia , Rhipicephalus/metabolismo , Rhipicephalus/microbiología , Análisis de Secuencia de ARNRESUMEN
Candida dubliniensis is an opportunistic yeast that has been recovered from several body sites in many populations; it is most often recovered from the oral cavities of human immunodeficiency virus-infected patients. Although extensive studies on epidemiology and phylogeny of C. dubliniensis have been performed, little is known about virulence factors such as exoenzymatic and hemolytic activities. In this study we compared proteinase, hyaluronidase, chondroitin sulphatase and hemolytic activities in 18 C. dubliniensis and 30 C. albicans strains isolated from AIDS patients. C. albicans isolates produced higher amounts of proteinase than C. dubliniensis (p < 0.05). All the tested C. dubliniensis strains expressed hyaluronidase and chondroitin sulphatase activities, but none of them were significantly different from those observed with C. albicans (p > 0.05). Hemolytic activity was affected by CaCl2; when this component was absent, we did not notice any significant difference between C. albicans and C. dubliniensis hemolytic activities. On the contrary, when we added 2.5 g% CaCl2, the hemolytic activity was reduced on C. dubliniensis and stimulated on C. albicans tested strains (p < 0.05).
Asunto(s)
Candida/enzimología , Condroitinsulfatasas/biosíntesis , Proteínas Hemolisinas/biosíntesis , Hialuronoglucosaminidasa/biosíntesis , Péptido Hidrolasas/biosíntesis , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Candida/clasificación , Candida/patogenicidad , Humanos , Factores de VirulenciaRESUMEN
Candida dubliniensis is an opportunistic yeast that has been recovered from several body sites in many populations; it is most often recovered from the oral cavities of human immunodeficiency virus-infected patients. Although extensive studies on epidemiology and phylogeny of C. dubliniensis have been performed, little is known about virulence factors such as exoenzymatic and hemolytic activities. In this study we compared proteinase, hyaluronidase, chondroitin sulphatase and hemolytic activities in 18 C. dubliniensis and 30 C. albicans strains isolated from AIDS patients. C. albicans isolates produced higher amounts of proteinase than C. dubliniensis (p < 0.05). All the tested C. dubliniensis strains expressed hyaluronidase and chondroitin sulphatase activities, but none of them were significantly different from those observed with C. albicans (p > 0.05). Hemolytic activity was affected by CaCl2; when this component was absent, we did not notice any significant difference between C. albicans and C. dubliniensis hemolytic activities. On the contrary, when we added 2.5 g percent CaCl2, the hemolytic activity was reduced on C. dubliniensis and stimulated on C. albicans tested strains (p < 0.05).
C. dubliniensis é uma levedura oportunista que, embora já tenha sido isolada de vários sítios anatômicos é, com maior frequência, encontrada na boca de pacientes infectados pelo HIV. Embora tenham sido realizados numerosos estudos sobre a epidemiologia e filogenia, seus fatores de virulência como atividade exoenzimática e atividade hemolítica, são, ainda, pouco conhecidos. Neste estudo comparou-se a atividade in vitro de proteinase, hialuronidase, condroitin sulfatase e atividade hemolítica de 18 cultivos de C. dubliniensis com 30 cultivos de C. albicans, todos isolados de pacientes com SIDA. Foi evidenciada maior atividade de proteinase em C. albicans em relação a C. dubliniensis (p < 0,05). Todos os isolados de C. dubliniensis evidenciaram atividade de hialuronidase e condroitin-sulfatase de forma similar ao observado com C. albicans (p > 0,05). Constatou-se que a atividade hemolítica foi influenciada pelo CaCl2; em sua ausência não foram observadas diferenças na atividade hemolítica das duas espécies; todavia, ao se agregar 2,5 por cento de CaCl2, a atividade hemolítica de C. dubliniensis foi reduzida enquanto a de C. albicans, estimulada (p < 0,05).