Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35629536

RESUMEN

Due to environmental concerns, the search for sustainable construction solutions has been increasing over the years. This global concern is creating a trend in the use of recycled aggregates resulting from construction and demolition wastes from different sources. In addition to their physical and mechanical properties, it is important to analyse their ecotoxicological risk to determine whether their leachates might be an issue. To assess ecotoxicity, biological tests should be performed for different trophic levels. This type of test is expensive and needs a high level of expertise, which leads to a lack of studies on recycled aggregates including ecotoxicity analysis. This paper presents a set of predictive ecotoxicity results based on the published studies on recycled aggregates. These results are the outcome of applying an innovative methodology previously developed and validated by the authors aiming to foresee the ecotoxicological fate of building materials' constituents and products. The application of this methodology enables the classification of a recycled aggregate product as safe or unsafe in terms of ecotoxicity risk, while keeping biological testing to a minimum.

2.
Materials (Basel) ; 14(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34576678

RESUMEN

The incorporation of recycled aggregates in concrete not only reduces the extraction of natural resources, but also decreases landfill disposal of construction and demolition waste. Hence, environmental impacts and costs are reduced, promoting the use of recycled aggregates and circular economy. However, the impacts of transport depend on the distance between facilities and longer distances may result in recycled aggregates being more costly and having larger environmental impact than natural aggregates. This paper discusses this topic, presents a review on the use of life cycle assessment methodology on natural and recycled aggregates for concrete, and applies this methodology in a real context pertaining the procurement of coarse aggregates to ready-mix concrete plants. A case study of two Portuguese regions, Coimbra and Lisbon, is presented. For each region, a quarry, a construction and demolition waste plant, and a ready-mix concrete plant are chosen and a comparative life cycle assessment is made. Different scenarios for the supply of natural and recycled aggregates are studied and the scenarios for recycled aggregates procurement include different hypotheses for the installation (construction and demolition waste plant or quarry) processing the construction and demolition waste into recycled aggregates. For this case study and both regions, it was found that the supply of recycled aggregates produced at the construction and demolition waste plant has lower environmental impact and cost than all other scenarios, including the provision of natural aggregates, except when it is assumed that the quarry is licensed and equipped for receiving unsorted construction and demolition waste and processing it into recycled aggregates. The paper shows that transport distance is a determining factor in the comparison of the impacts of the procurement of natural and recycled aggregates. Moreover, in the Portuguese context, the environmental impacts of the procurement of recycled aggregates may be smaller than those of natural aggregates, but cost may be larger for recycled aggregates, preventing that the most sustainable option is chosen.

3.
Materials (Basel) ; 12(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443174

RESUMEN

Envelope insulation and protection is an important technical solution to reduce energy consumption, exterior damage, and environmental impacts in buildings. Thermal insulation tiles are used simultaneously as thermal insulation of the building envelope and protection material of under layers in flat roofs systems. The purpose of this research is to assess the environmental impacts of the life cycle of thermal insulation tiles for flat roofs. This research presents the up-to-date "cradle to gate" environmental performance of thermal insulation tiles for the environmental categories and life-cycle stages defined in European standards on environmental evaluation of building. The results presented in this research were based on site-specific data from a Portuguese factory and resulted from a consistent methodology that is here fully described, including the raw materials extraction and production, and the modelling of energy and transport processes at the production stage of thermal insulation tiles. These results reflect the weight of the raw-materials within the production process of thermal insulation tiles in all environmental categories and show that some life cycle stages, such as transportation of raw materials (A2) and packaging and packaging waste (A3.1 and A3.3, respectively), may not be discarded in a cradle to gate study of a construction material because they can make a significant contribution to some environmental categories. Moreover, complementary results regarding the economic, environmental, and energy performance Life Cycle Assessment (LCA) of flat roofs solutions incorporating the thermal insulation tiles studied showed that the influence of the economic costs on the total aggregated costs of these solutions is much higher than that of the environmental costs due to the lower environmental costs of the thermal insulation tiles at the product stage (A1-A3). These costs influenced the corresponding percentage of the environmental costs (between 14% and 18%) and the percentage of the economic costs (between 70% and 75%) in the total aggregated (environmental, economic, and energy) net present value (NPV). Finally, a complementary "cradle to cradle" environmental LCA discussion is presented including the following additional life cycle stages: maintenance and replacement (B2-B4), operational energy use (B6), and end-of-life stage and benefits and loads beyond the system boundary (C1-C4 and D).

4.
Heliyon ; 4(4): e00611, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29862372

RESUMEN

This paper presents an overview of previous studies on the environmental impact (EI) and toxicity of producing recycled concrete aggregates (RCA), fly ash (FA), cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA) with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation (POCP), acidification potential (AP), eutrophication potential (EP), non-renewable energy (PE-NRe) and renewable energy (PE-Re). In terms of toxicity, leachability (chemical and ecotoxicological characterization) was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials.

5.
Materials (Basel) ; 10(6)2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28773011

RESUMEN

Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH-Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP-Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability.

6.
Materials (Basel) ; 9(5)2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28773516

RESUMEN

Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA