RESUMEN
OBJECTIVES: Sound pressure and exhaled flow have been identified as important factors associated with higher particle emissions. The aim of this study was to assess how different vocalizations affect the particle generation independently from other factors. DESIGN: Experimental study. METHODS: Thirty-three experienced singers repeated two different sentences in normal loudness and whispering. The first sentence consisted mainly of consonants like /k/ and /t/ as well as open vowels, while the second sentence also included the /s/ sound and contained primarily closed vowels. The particle emission was measured using condensation particle counter (CPC, 3775 TSI Inc.) and aerodynamic particle sizer (APS, 3321 TSI Inc.). The CPC measured particle number concentration for particles larger than 4 nm and mainly reflects the number of particles smaller than 0.5 µm since these particles dominate total number concentration. The APS measured particle size distribution and number concentration in the size range of 0.5-10 µm and data were divided into >1 µm and <1 µm particle size ranges. Generalized linear mixed-effects models were constructed to assess the factors affecting particle generation. RESULTS: Whispering produced more particles than speaking and sentence 1 produced more particles than sentence 2 while speaking. Sound pressure level had effect on particle production independently from vocalization. The effect of exhaled airflow was not statistically significant. CONCLUSIONS: Based on our results the type of vocalization has a significant effect on particle production independently from other factors such as sound pressure level.
RESUMEN
Microplastic (MP) pollution is evolving into one of the most pressing environmental concerns worldwide. This study assessed the impact of economic activities on atmospheric MP pollution across 17 megacities in northern China, analyzing the correlation between the deposition flux of atmospheric MPs and variables such as city population, gross domestic product (GDP), and industrial structure. The results have shown that the MP pollution is obviously impacted by human activities related to increased GDP, population, as well as tertiary service sector, in which the MP pollution shows most close relationship with the GDP growth. Polypropylene, polyamide, polyurethane, and polyethylene were identified as the primary components of atmospheric MPs. The average particle size of MPs in atmospheric dustfall is 78.3 µm, and the frequency of MP particles increases as the particle size decreases. The findings highlight the complex relationship between socio-economic development and atmospheric MP accumulation, providing essential insights for the formulation of targeted emission reduction strategies.
RESUMEN
Atmospheric microplastics (MPs) have received global attention across various sectors of society due to their potential negative impacts. This study aims to understand the physicochemical characteristics of MPs in inland and coastal megacities for raising awareness about the urgent need to reduce plastic pollution. Laser Direct Infrared Imaging (LDIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX) techniques were employed to characterize atmospheric MPs in megacities (inland megacity Beijing and coastal megacity Shanghai) in China, focusing on their physicochemical characteristics, including compositional types, number concentration, morphology, size, possible sources, and potential health risks. The LDIR analysis identified sixteen different types of MPs present in the atmospheres of Beijing and Shanghai. The number concentration of atmospheric MPs in Beijing (3.0 items/m3) is 1.8 times that of Shanghai (1.7 items/m3). The study found that the variations in MP pollution between Beijing and Shanghai are influenced by the urban industrial structure and geographical location. Morphological analysis indicates that fragment MPs have the highest relative abundance in Beijing, while fibrous MPs dominate the atmosphere of Shanghai. Additionally, the study assessed the potential health risks of atmospheric MPs to urban residents. The results suggest that residents of Beijing face more severe health risks from atmospheric MPs compared to those in Shanghai. These findings underscore the urgency to address the issue of atmospheric MPs and provide crucial evidence for the formulation of relevant environmental and health policies.
RESUMEN
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
RESUMEN
Urban air fine particles are a major health-relating problem. However, it is not well understood how the health-relevant features of fine particles should be monitored. Limitations of PM2.5 (mass concentration of sub 2.5 µm particles), which is commonly used in the health effect estimations, have been recognized and, e.g., World Health Organization (WHO) has released good practice statements for particle number (PN) and black carbon (BC) concentrations (2021). In this study, a characterization of urban wintertime aerosol was done in three environments: a detached housing area with residential wood combustion, traffic-influenced streets in a city centre and near an airport. The particle characteristics varied significantly between the locations, resulting different average particle sizes causing lung deposited surface area (LDSA). Near the airport, departing planes had a major contribution on PN, and most particles were smaller than 10 nm, similarly as in the city centre. The high hourly mean PN (>20 000 1/cm3) stated in the WHO's good practices was clearly exceeded near the airport and in the city centre, even though traffic rates were reduced due to a SARS-CoV-2-related partial lockdown. In the residential area, wood combustion increased both BC and PM2.5, but also PN of sub 10 and 23 nm particles. The high concentrations of sub 10 nm particles in all the locations show the importance of the chosen lower size limit of PN measurement, e.g., WHO states that the lower limit should be 10 nm or smaller. Furthermore, due to ultrafine particle emissions, LDSA per unit PM2.5 was 1.4 and 2.4 times higher near the airport than in the city centre and the residential area, respectively, indicating that health effects of PM2.5 depend on urban environment as well as conditions, and emphasizing the importance of PN monitoring in terms of health effects related to local pollution sources.