Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(7): e18013, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483695

RESUMEN

Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 µg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 µg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 µg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 µg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 µg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.

2.
Heliyon ; 9(5): e16375, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251821

RESUMEN

The 95% ethanolic extract of the dry powder of Calotropis gigantea (C. gigantea) stem bark was separated by fractionation with different solutions to yield 4 fractions: dichloromethane (CGDCM), ethyl acetate (CGEtOAc), and water (CGW). This research focused on CGDCM-induced apoptosis in HepG2 cells with IC50 and above-IC50 values, which provide useful information for future anticancer applications. CGDCM had lower cytotoxicity on normal lung fibroblast IMR-90 cells than on HepG2 cells. Apoptotic induction of CGDCM was mediated by decreased fatty acid and ATP synthesis while increasing reactive oxygen species production. The effects of the four extracts on the activity of the four major CYP450 isoforms (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) were determined using the CYP-specific model activity of each isoform. All four fractions of the extract were shown to be poor inhibitors of CYP1A2 and CYP2E1 (IC50 > 1000 µg/mL) and moderate inhibitors of CYP3A4 (IC50 = 56.54-296.9 µg/mL). CGDCM and CGW exerted moderate inhibition activities on CYP2C9 (IC50 = 59.56 and 46.38 µg/mL, respectively), but CGEtOH and CGEtOAc exhibited strong inhibition activities (IC50 = 12.11 and 20.43 µg/mL, respectively). It is proposed that C. gigantea extracts at high doses have potential for further studies to develop alternative anticancer applications. Inhibiting CYP2C9 activity may also lead to drug-herb interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA