Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Med Mal Infect ; 50(2): 99-112, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31257063

RESUMEN

In 2015, 212 million new cases of malaria were reported, causing 429,000 deaths. The World Health Organization (WHO) estimated a 41% decrease in the number of new cases worldwide between 2000 and 2015. The number of deaths from malaria fell by 62% worldwide and by 71% in Africa. In mainland France, malaria is mainly imported by travelers or migrants from endemic areas, in particular sub-Saharan Africa (95%). In France, the number of imported malaria cases, mainly due to Plasmodium falciparum (85%), was estimated at about 82,000 for the period 2000-2015. Over the same period, 6,468 cases of malaria were reported in the French armed forces, of which 2,430 cases (37.6%) were considered as imported because occurring outside of endemic areas. The number of malaria cases also fell between 2000 and 2015 in Mayotte and French Guiana, a malaria transmission zone. Mayotte has entered the elimination of malaria with less than 15 cases per year. In French Guiana, between 300 and 500 cases have been reported annually in recent years. The decline in morbidity and mortality is usually attributed to vector control measures and improved access to effective treatments. However, the Anopheles mosquitoes that transmit the disease have developed resistance against most insecticides. Similarly, malaria parasites have developed resistance against most of the antimalarial drugs used as prevention or treatment, even the latest marketed combinations such as artemisinin-based combination therapies.


Asunto(s)
Malaria/epidemiología , Animales , Enfermedades Transmisibles Importadas/epidemiología , Francia/epidemiología , Salud Global , Humanos , Incidencia , Factores de Tiempo
2.
J Exp Biol ; 221(Pt 6)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29378815

RESUMEN

Aestivation and dispersive migration are the two strategies evoked in the literature to explain the way in which malaria vectors Anopheles coluzzii and A. gambiae survive the harsh climatic conditions of the dry season in sub-Saharan Africa. However, the physiological mechanisms regulating these two strategies are unknown. In the present study, mosquito species were exposed to controlled environmental conditions mimicking the rainy and dry seasons of south western Burkina Faso. Survival strategies were studied through morphometric (wing length), ecophysiological (respiratory gas exchanges), biochemical (cuticular hydrocarbons composition) and molecular (AKH mRNA expression levels) parameters, variations of which are usually considered to be hallmarks of aestivation and dispersion mechanisms in various insects. Our results showed that ecophysiological and morphometric adjustments are made in both species to prevent water losses during the dry season. However, the usual metabolic rate modifications expected as signatures of aestivation and migration were not observed, highlighting specific and original physiological mechanisms sustaining survival in malaria mosquitoes during the dry season. Differences in epicuticular hydrocarbon composition and AKH levels of expression were found between the permanent and temporary A. coluzzii populations, illustrating the great phenotypic plasticity of this mosquito species. Altogether, our work underlines the diverse and complex pattern of changes occurring in the two mosquito species and at the population level to cope with the dry season and highlights potential targets of future control tools.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Ecosistema , Estivación , Mosquitos Vectores/fisiología , Animales , Anopheles/genética , Anopheles/crecimiento & desarrollo , Burkina Faso , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Malaria/transmisión , Mosquitos Vectores/genética , Mosquitos Vectores/crecimiento & desarrollo , Fenotipo , Estaciones del Año
3.
Parasit Vectors ; 9(1): 565, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27806730

RESUMEN

BACKGROUND: In West Africa, populations of the malaria vector mosquito, Anopheles coluzzii, are seasonally exposed to strong desiccating conditions during the dry season. Their dynamics strictly follows the pace of the availability of suitable larval development sites (water collections). Accordingly, mosquitoes can reproduce all year long where permanent breeding is possible, or stop reproduction and virtually disappear at the onset of the dry season when surface water dries up, like observed in temporary habitats of dry savannah areas. This highlights the strong adaptive abilities of this mosquito species, which relies at least in part, upon physiological and molecular mechanisms of specific signatures. METHODS: Here, we analysed a range of physiological and molecular responses expressed by geographically different populations of An. coluzzii inhabiting permanent and temporary breeding sites from the north and the south-west of Burkina Faso. Four mosquito colonies, namely (i) Oursi, built from females breeding in permanent habitats of the north; (ii) Déou, from temporary northern habitats; (iii) Soumousso from south-western temporary breeding sites; and (iv) Bama, from permanent habitats of the same south-western zone, were reared in climatic chambers under contrasted environmental conditions, mimicking temperature, relative humidity and light regimen occurring in northern Burkina Faso. Female mosquitoes were analysed for the seasonal variation in their amounts of proteins, triglycerides and free-circulating metabolites. The expression level of genes coding for the adipokinetic (AKH-I) and the AKH/corazonin-related peptides (ACP) were also assessed and compared among populations and environmental conditions. RESULTS: Our analysis did not reveal an apparent pattern of physiological and molecular variations strictly correlated with either the larval ecotype or the geographical origin of the mosquitoes. However, specific distinct responses were observed among populations, suggesting that dry season survival may rely on more complex ecological parameters at a micro-habitat scale. Interestingly, the physiological and molecular data support the hypothesis that different aestivation abilities exist among populations of An. coluzzii inhabiting contrasted ecological settings. In particular, the striking metabotypes differentiation and the AKH mRNA expression level observed in females from temporary northern populations may suggest the existence of a "strong" aestivation strategy in these specimens. CONCLUSION: Our work provides insights into the physiological and molecular basis of dry and rainy season responses in An. coluzzii, and highlights the important diversity of the mechanisms involved. Such results represent key data for understanding the ecophysiological mechanisms underpinning the strong adaptive potential of this malaria vector species, which undoubtedly contributes to the spreading of mosquito distribution areas in space and time.


Asunto(s)
Anopheles/fisiología , Deshidratación , Estrés Fisiológico , Animales , Anopheles/química , Anopheles/efectos de la radiación , Burkina Faso , Femenino , Perfilación de la Expresión Génica , Humedad , Proteínas de Insectos/análisis , Luz , Estaciones del Año , Temperatura , Triglicéridos/análisis
4.
J Med Entomol ; 53(1): 130-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26576935

RESUMEN

To gain insight into the dry season survival strategies of Anopheles gambiae s.l., a new contained semi-field system was developed and used for the first time in Burkina Faso, West Africa. The system consisted of a screened greenhouse within which the local environment was reproduced, including all ecological requirements for mosquito development cycle completion. The system was seeded with the progenies of female Anopheles gambiae, Anopheles coluzzii, and Anopheles arabiensis collected in the vicinity of the greenhouse during the rainy season. After successful establishment in the semi-field system, mosquito populations were monitored over a 1-yr period by regular surveys of larval and adult specimens. We provided evidence for the persistence of adult mosquitoes throughout the dry season, in the absence of any suitable larval development site. During the hot and dry periods, adult insects were observed in artificial shelters (clay pots, building blocks, and dark corners). The mosquito population rapidly built up with the return of the rainy season in the area, when artificial breeding sites were refilled in the enclosure. However, only An. coluzzii and, later, An. arabiensis were detected in the subsequent rainy season, whereas no An. gambiae specimen was found. Our findings suggest that An. coluzzii and An. arabiensis may be able to aestivate throughout the dry season in Southwestern Burkina Faso, whereas An. gambiae might adopt a different dry-season survival strategy, such as long-distance re-colonization from distant locations. These results may have important implications for malaria control through targeted vector control interventions.


Asunto(s)
Anopheles , Animales , Burkina Faso , Femenino , Larva , Masculino , Dinámica Poblacional , Estaciones del Año
5.
Data Brief ; 5: 255-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26543889

RESUMEN

In dry savannahs of West-Africa, the malarial mosquitoes of the Anopheles gambiae sensu stricto complex annually survive the harsh desiccating conditions of the dry season. However, the physiological and biochemical mechanisms underlying how these mosquitoes survive such desiccating conditions are still undefined, and controversial. In this context, we provide the first work examining both proteomic and metabolomic changes in the two molecular forms of A. gambiae s.s (M and S forms) experimentally exposed to the rainy and dry season conditions as they experience in the field. Protein abundances of the mosquitoes were measured using a two-dimensional fluorescence difference gel electrophoresis (2D DIGE) coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) and tandem mass spectrometry (MS) for protein identification. These assays were conducted by Applied Biomics (http://www.appliedbiomics.com, Applied Biomics, Inc. Hayward, CA, USA), and the mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000294. The metabolomic analysis was conducted using both Acquity UPLC(®) system (for amino acid identification), and a gas-chromatography-mass spectrometry platform (for sugars identification). Metabolomic fingerprintings were assessed in the University of Rennes 1, UMR CNRS 6553 EcoBio (France). A detailed interpretation of the obtained data can be found in Hidalgo et al. (2014) [1] (Journal of Insect Physiology (2014)).

6.
Biochem Biophys Res Commun ; 468(1-2): 73-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26546819

RESUMEN

A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring (14)C-CO2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation.


Asunto(s)
Ácidos Grasos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Carnitina O-Palmitoiltransferasa/genética , Células Cultivadas , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Eliminación de Gen , Oxidación-Reducción , Palmitatos/metabolismo , Ratas Sprague-Dawley
7.
Transfus Clin Biol ; 22(3): 101-6, 2015 Aug.
Artículo en Francés | MEDLINE | ID: mdl-26141429

RESUMEN

Arboviruses - viruses transmitted by haematophagous arthropods - are responsible for febrile syndromes, which sometimes include haemorrhagic or neurological symptoms. Human activities have facilitated the emergence of these originally zoonotic viruses and the domestication and spread throughout the world of their major vectors. The last decade has seen significant changes in the epidemiology of arboviruses transmitted by mosquitoes of the genus Aedes, particularly in relation to the intercontinental spread of Aedes albopictus. Here, we address the epidemiological consequences of the invasion by this species into Central Africa and Europe in a context of viral globalization. The risk of transmission in these areas is influenced by virus-vector adaptation phenomena as well as environmental phenomena including climate. Faced with these new risks, it is essential to develop competences in entomological and virological surveillance, risk assessment and forecasting of epidemic risk in order to develop strategies for the prevention and control of epidemics.


Asunto(s)
Aedes/virología , Infecciones por Arbovirus/transmisión , Arbovirus/fisiología , Enfermedades Transmisibles Emergentes/transmisión , Mordeduras y Picaduras de Insectos/virología , Insectos Vectores/virología , Adaptación Fisiológica , África Central/epidemiología , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/prevención & control , Clima , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Ecosistema , Epidemias/prevención & control , Europa (Continente)/epidemiología , Humanos , Mordeduras y Picaduras de Insectos/epidemiología , Vigilancia de la Población , Viaje
8.
J Insect Physiol ; 70: 102-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25083809

RESUMEN

The mechanisms by which Anopheles gambiae mosquitoes survive the desiccating conditions of the dry season in Africa and are able to readily transmit malaria soon after the rains start remain largely unknown. The desiccation tolerance and resistance of female An. gambiae M and S reared in contrasting environmental conditions reflecting the onset of dry season ("ods") and the rainy season ("rs") was determined by monitoring their survival and body water loss in response to low relative humidity. Furthermore, we investigated the degree to which the physiology of 1-h and 24-h-old females is altered at "ods" by examining and comparing their quantitative metabotypes and proteotypes with conspecifics exposed to "rs" conditions. Results showed that distinct biochemical rearrangements occurred soon after emergence in female mosquitoes that enhance survival and limit water loss under dry conditions. In particular, three amino acids (phenylalanine, tyrosine, and valine) playing a pivotal role in cuticle permeability decreased significantly from the 1-h to 24-h-old females, regardless of the experimental conditions. However, these amino acids were present in higher amounts in 1-h-old female An. gambiae M reared under "ods" whereas no such seasonal difference was reported in S ones. Together with the 1.28- to 2.84-fold increased expression of cuticular proteins 70 and 117, our data suggests that cuticle composition, rigidity and permeability were adjusted at "ods". Increased expression of enzymes involved in glycogenolytic and proteolytic processes were found in both forms at "ods". Moreover, 1-h-old S forms were characterised by elevated amounts of glycogen phosphorylase, isocitrate dehydrogenase, and citrate synthase, suggesting an increase of energetic demand in these females at "ods".


Asunto(s)
Anopheles/fisiología , Deshidratación/metabolismo , Aminoácidos/análisis , Animales , Anopheles/química , Anopheles/metabolismo , Agua Corporal/fisiología , Carbohidratos/análisis , Deshidratación/fisiopatología , Femenino , Proteómica , Estaciones del Año
9.
Infect Genet Evol ; 28: 676-80, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25042295

RESUMEN

Internal transcribed spacer regions of ribosomal DNA were sequenced, and species-specific primers were designed to simplify the identification of two morphologically similar species of the Detritus complex, Ochlerotatus detritus and Ochlerotatuscoluzzii. Each newly designed primer was able to amplify a species-specific fragment with a different size. Samples from France and Germany were successfully tested. This new tool prompts for bio-ecological studies to refine basic knowledge on the bionomics of this species complex, towards a better control and prevention of ensuing nuisances. Moreover, ITS2 sequencing revealed the existence of (1) two distinct haplotypes of Oc. detritus that are sympatric and widely distributed along the French Atlantic and Mediterranean littorals and (2) a specific haplotype in mosquitoes sampled from Tunisia, raising the question of the taxonomic status of this North-African population.


Asunto(s)
Heterogeneidad Genética , Ochlerotatus/clasificación , Ochlerotatus/genética , Alelos , Animales , Secuencia de Bases , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Francia , Alemania , Haplotipos , Masculino , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa Multiplex , Filogenia , Reproducibilidad de los Resultados , Alineación de Secuencia
10.
Physiol Biochem Zool ; 87(3): 486-97, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24769712

RESUMEN

This study explored the metabolic adjustments prompted by a switch between the rainy and dry season conditions in the African malaria mosquitoes Anopheles gambiae (M and S molecular forms) and Anopheles arabiensis. Mosquitoes were reared in contrasted experimental conditions reflecting environmental variation in Burkina Faso. Thirty-five metabolites (including sugars, polyols, and amino acids) were monitored in newly emerged males and females, and their ecdysteroid titers were determined. Metabolomic signatures were remarkably similar across species, when specimens of same age and sex were reared under identical experimental conditions. In males and females, amino acids (including glycine, leucine, phenylanine, serine, threonine, and valine) were accumulated in 1-h-old mosquitoes, then decreased 24 h after emergence, probably reflecting adult maturation and the amino acid-consuming process of cuticle sclerotisation. In turn, elevated amounts of alanine and proline in 24-h-old mosquitoes may assist the development of flight ability. Lower concentration of tricarboxylic acid cycle intermediates and isoleucine characterized older females reared under dry season conditions, suggesting metabolic and reproduction depression. In all cases, ecdysteroid concentration was much higher in males than in females, with significant seasonal variation in males. This might reflect a unique role of these hormones in shaping reproductive strategies and population demography in the An. gambiae s.l. species complex, further contributing to local adaptation in a highly fluctuating environment.


Asunto(s)
Anopheles/metabolismo , Ecdisteroides/análisis , Metaboloma/fisiología , Estaciones del Año , Animales , Anopheles/crecimiento & desarrollo , Burkina Faso , Ambiente , Femenino , Masculino , Reproducción , Factores Sexuales
11.
Acta Trop ; 132 Suppl: S42-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24370676

RESUMEN

The swarming behaviour of natural populations of Anopheles gambiae and An. coluzzii (formerly known as An. gambiae S and M forms, respectively) were investigated through longitudinal surveys conducted between July 2006 and October 2009 in two rural areas of south-western Burkina Faso where these forms are sympatric. In both sites, the majority of swarms were recorded above visual markers localised among houses. In Soumousso, a wooded area of savannah, 108 pairs caught in copula from 205 swarms were sampled; in VK7, a rice growing area, 491 couples from 250 swarms were sampled. If segregated swarms were the norm in both sites, many visual markers were shared by the two forms of An. gambiae. Furthermore, mixed swarms were collected annually in frequencies varying from one site to another, though no mixed inseminations were recorded, corroborating the low hybrid rate previously reported in the field. The occurrence of inter-specific mate-recognition mechanisms, which allow individuals to avoid hybridisation, is discussed.


Asunto(s)
Anopheles/fisiología , Conducta Sexual Animal , Animales , Burkina Faso , Femenino , Estudios Longitudinales , Masculino , Población Rural , Simpatría
12.
Acta Trop ; 132 Suppl: S35-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24373897

RESUMEN

The swarming behaviour of natural populations of Anopheles arabiensis was investigated by conducting transect surveys on 10 consecutive days, around dusk, from March to April and from September to October 2012 in Dioulassoba, a district of Bobo-Dioulasso city in Burkina Faso (West Africa). Swarms were observed outside, around identified larval breeding sites on the banks of the Houet River, as well as in the open-air courtyards found at the centre of many homes in the region. Swarms were found to occur in open sunlit spaces, mostly located above physical or visual cues somehow visually distinct from the surrounding area. Overall 67 and 78 swarms were observed, respectively, during the dry season (March-April) and the rainy season (September-October) of 2012, between 1.5m and 4.5m above the ground at their centre. 964 mosquitoes were collected and analysed from dry season swarms, of which most were male, and all were An. arabiensis, as were the few resting mosquitoes collected indoors. Larvae collected from breeding sites found on the banks of the Houet River mostly consisted of An. arabiensis and only a minority of Anopheles coluzzii (formerly identified as An. gambiae M form). Of 1694 mosquitoes analysed from 78 swarms in the rainy season collections, a few An. gambiae (formerly known as An. gambiae S form) males were identified, and the remainders were An. arabiensis. The majority of larvae collected during the wet season from the same breeding sites were identified as An. arabiensis followed by An. coluzzii and An. gambiae. The same pattern of species composition was observed in resting mosquitoes, though the proportion of An. arabiensis was less overwhelming. These data support the conclusion that An. arabiensis is the most prevalent species in this area, though the difference in species composition when using different population sampling techniques is noteworthy. Further studies are required for more detailed investigations of male dispersal, feeding behaviour and mating patterns in this urban setting.


Asunto(s)
Anopheles/fisiología , Conducta Sexual , Animales , Anopheles/clasificación , Burkina Faso , Humanos , Masculino , Población Urbana
13.
Med Vet Entomol ; 28(3): 337-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24192050

RESUMEN

Anopheles moucheti Evans (Diptera: Culicidae) is a major vector of malaria in forested areas of Central Africa. However, few genetic tools are available for this species. The present study represents the first attempt to characterize chromosomes in An. moucheti females collected in Cameroon. Ovarian nurse cells contained polytene chromosomes, which were suitable for standard cytogenetic applications. The presence of three polymorphic chromosomal inversions in An. moucheti was revealed. Two of these inversions were located on the 2R chromosome arm. The homology between the 2R chromosome arms of An. moucheti and Anopheles gambiae Giles was established by fluorescent in situ hybridization of six An. gambiae genic sequences. Mapping of the probes on chromosomes of An. moucheti detected substantial gene order reshuffling between the two species. The presence of polytene chromosomes and polymorphic inversions in An. moucheti provides a new basis for further population genetic, taxonomic and ecological studies of this neglected malaria vector.


Asunto(s)
Anopheles/genética , Inversión Cromosómica , Genoma de los Insectos/genética , Insectos Vectores/genética , Malaria/transmisión , Cromosomas Politénicos/genética , Animales , Camerún , Mapeo Cromosómico , Femenino , Malaria/parasitología
14.
Evol Appl ; 6(6): 910-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24062800

RESUMEN

The primary Afrotropical malaria mosquito vector Anopheles gambiae sensu stricto has a complex population structure. In west Africa, this species is split into two molecular forms and displays local and regional variation in chromosomal arrangements and behaviors. To investigate patterns of macrogeographic population substructure, 25 An. gambiae samples from 12 African countries were genotyped at 13 microsatellite loci. This analysis detected the presence of additional population structuring, with the M-form being subdivided into distinct west, central, and southern African genetic clusters. These clusters are coincident with the central African rainforest belt and northern and southern savannah biomes, which suggests restrictions to gene flow associated with the transition between these biomes. By contrast, geographically patterned population substructure appears much weaker within the S-form.

15.
Med Vet Entomol ; 27(3): 298-312, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23360106

RESUMEN

The molecular form composition of Anopheles gambiae Giles s.s. (Diptera: Culicidae) mating swarms and the associated mating pairs (copulae) were investigated during two rainy seasons (July to October, 2005 and July to November, 2006) in the villages of Soumousso and Vallée du Kou (VK7). Although the habitats of these villages differ markedly, sympatric populations of M and S molecular forms of An. gambiae s.s. occur in both places periodically. The main aim was to assess the degree to which these molecular forms mate assortatively. In Soumousso, a wooded savannah habitat, the majority of swarm samples consisted of only S-form males (21/28), although a few M-form males were found in mixed M- and S-form swarms. In VK7, a rice growing area, the majority of swarm samples consisted of only M-form males (38/62), until October and November 2006, when there were nearly as many mixed-form as single-form swarms. Overall, ∼60% of M- and S-form swarms were temporally or spatially segregated; the two forms were effectively prevented from encountering each other. Of the remaining 40% of swarms, however, only about half were single-form and the rest were mixed-form. Of the 33 copulae collected from mixed-form swarms, only four were mixed-form pairs, significantly fewer than expected by random pairing between forms (χ(2) = 10.34, d.f. = 2, P < 0.01). Finally, all specimens of inseminated females were of the same form as the sperm contained within their spermatheca (n = 91), even for the four mixed-form copulae. These findings indicate that assortative mating occurs within mixed-form swarms, mediated most probably by close-range mate recognition cues.


Asunto(s)
Anopheles/fisiología , Preferencia en el Apareamiento Animal , Animales , Anopheles/clasificación , Anopheles/genética , Burkina Faso , ADN/análisis , Ambiente , Femenino , Masculino , Reacción en Cadena de la Polimerasa , Aislamiento Reproductivo , Estaciones del Año , Espermatozoides/metabolismo
16.
Brain Lang ; 125(3): 295-306, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21925720

RESUMEN

The role of fronto-striatal regions in processing different language rules such as semantic and (grapho) phonological ones is still under debate. We have recently developed a lexical analog of the Wisconsin card sorting task which measures set-shifting abilities where the visual rules color, number, shape were replaced by three language ones: semantic, rhyme and syllable onset (attack). In the present study we aimed to compare fronto-striatal activations between the different lexical rules that are required for matching the test words to the response ones. Using functional magnetic resonance imaging (fMRI), fourteen healthy, native French-speaking participants were scanned. The results showed that some regions within the brain language network are differentially involved in semantic and phonological processes. Semantic decisions activated significantly the ventrolateral prefrontal cortex, the dorsolateral prefrontal cortex, the fusiform gyrus, the ventral temporal lobe and the caudate nucleus, while phonological decisions produced significant activation in posterior Broca's area (area 44), the temporoparietal junction and motor cortical regions. These findings provide critical support for the existence of a ventral subcortical semantic pathway and a more dorsal phonological stream as proposed by Duffau, Leroy, and Gatignol (2008). Furthermore, we propose that the strong involvement of area 47/12 of the ventrolateral prefrontal cortex and caudate nucleus observed in semantic processing, is not specific to language, but to the fact that a category or a rule has to be retrieved amongst competing ones in memory, similarly to what is observed when planning a set-shift in the original (non-lexical) version of the Wisconsin card sorting task.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Comprensión/fisiología , Pruebas del Lenguaje , Vías Nerviosas/fisiología , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Lenguaje , Imagen por Resonancia Magnética , Masculino , Adulto Joven
17.
Med Vet Entomol ; 26(4): 447-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22681446

RESUMEN

In West Africa, M and S molecular forms of Anopheles gambiae sensu stricto (Diptera: Culicidae) Giles, frequently occur together, although with different population bionomics. The S form typically breeds in rain-dependant water collections and is present during the rainy season only whereas the M form can thrive all year long in areas with permanent breeding opportunities. In the present study, we explored physiological and developmental trade-offs at play in laboratory colonies and field populations of the M and S forms that originated from an area of sympatry in Burkina Faso, where M and S larvae exhibit such habitat segregation. In the laboratory, larvae of the M form developed slower than the S form (mean values 9.51 and 8.85 days, respectively, Wilcoxon's test, P < 0.001). Although wing length and dry weight at emergence showed large variations, M females were on average 8% heavier than S females of similar wing length. Higher nutritional reserves (proteins and lipids) in teneral adults explained part of this weight difference, reflecting a better ability of the M form to garner resources at the larval stage. Furthermore, a higher rate of ovarian maturation was observed in the M form after a single bloodmeal. The relevance of these findings for parasite transmission is discussed.


Asunto(s)
Anopheles/anatomía & histología , Anopheles/fisiología , Animales , Anopheles/genética , Anopheles/crecimiento & desarrollo , Burkina Faso , Conducta Alimentaria , Femenino , Aptitud Genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Fenotipo , Reproducción , Estaciones del Año
19.
Med Vet Entomol ; 26(1): 9-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21501199

RESUMEN

In West Africa, lineage splitting between the M and S molecular forms of the major Afro-tropical malaria mosquito, Anopheles gambiae (Diptera: Culicidae), is thought to be driven by ecological divergence, occurring mainly at the larval stage. Here, we present evidence for habitat segregation between the two molecular forms in and around irrigated rice fields located within the humid savannahs of western Burkina Faso. Longitudinal sampling of adult mosquitoes emerging from a range of breeding sites distributed along a transect extending from the heart of the rice field area into the surrounding savannah was conducted from June to November 2009. Analysis revealed that the two molecular forms and their sibling species Anopheles arabiensis are not randomly distributed in the area. A major ecological gradient was extracted in relation to the perimeter of the rice fields. The M form was associated with larger breeding sites mostly consisting of rice paddies, whereas the S form and An. arabiensis were found to depend upon temporary, rain-filled breeding sites. These results support hypotheses about larval habitat segregation and confirm the suggestion that the forms have different larval habitat requirements. Segregation appears to be clearly linked to anthropogenic permanent habitats and the community structure they support.


Asunto(s)
Anopheles/clasificación , Anopheles/fisiología , Ecosistema , Oryza/fisiología , Agricultura , Animales , Anopheles/genética , Burkina Faso , Demografía , Larva/clasificación , Larva/fisiología
20.
Bull Soc Pathol Exot ; 104(4): 307-12, 2011 Oct.
Artículo en Francés | MEDLINE | ID: mdl-21312081

RESUMEN

Field collections of the most common urban mosquito vectors Anopheles gambiae and Culex quinquefasciatus were carried out in June 2003, March 2004 and November 2005 to gather preliminary data on the insecticide susceptibility in mosquitoes from Lobito (Angola) using the WHO standard bioassays. Bioassays were performed on F0 adults emerging from the field larval collections and on unfed adults from landing catches on volunteers. Batches of mosquitoes from three selected locations (Alto Liro, San Jao and Bela Vista) were exposed for 1 hour to several insecticides such as DDT 4%, carbosulfan 0.4%, permethrin 1%, deltamethrin 0.05% and cyfluthrin 0.15%, in order to estimate the immediate knockdown times (kdT50 and kdT95) and the mortality rate after exposure. The results revealed that mosquito susceptibility to insecticides varied depending on the insecticide, the site and the period of collection. The main local malaria vector A. gambiae (both M and S forms) was basically resistant to DDT and susceptible to all pyrethoids, regardless of the period and the site of collections. The overall mortality rate due to DDT was 73% in Alto Liro, 89% in San Jao and varied depending on the period in Bela Vista between 95% in March 2004 and 100% in November 2005. The mortality due to pyrethoids was 100% at all locations, with the kdT50 and KdT95 times ranging between 9 and 16 minutes and between 18 and 29 minutes, respectively. Concerning the C. quinquefasciatus, populations from Yard and Caponte were resistant to all insecticides tested; the mortality rate was 40% with deltamethrin and 70% with permethrin, while no lethal effect was observed with DDT or carbosulfan. In conclusion, despite its probable high resistance to DDT, the main local malaria vector A. gambiae remained fully susceptible to pyrethroids. This could forecast a good biological efficacy of the scheduled vector control interventions in Angola, based on a large-scale distribution of long-lasting, insecticide-treated nets and on the implementation of indoor residual spraying. The local vector control programme must include well-adapted IEC campaigns and full participation of the community for better management of the insecticide resistance in targeted mosquitoes and for better control of malaria vector populations.


Asunto(s)
Anopheles , Culex , Insecticidas , Angola , Animales , DDT , Femenino , Insectos Vectores , Resistencia a los Insecticidas , Control de Mosquitos/métodos , Piretrinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA