Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 17(3): 439-451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38081361

RESUMEN

BACKGROUND & AIMS: The intestinal epithelium interfaces with a diverse milieu of luminal contents while maintaining robust digestive and barrier functions. Facultative intestinal stem cells are cells that survive tissue injury and divide to re-establish the epithelium. Prior studies have shown autophagic state as functional marker of facultative intestinal stem cells, but regulatory mechanisms are not known. The current study evaluated a post-transcriptional regulation of autophagy as an important factor for facultative stem cell state and tissue regeneration. METHODS: We evaluated stem cell composition, autophagic vesicle content, organoid formation, and in vivo regeneration in mice with intestinal epithelial deletion of the RNA binding protein IGF2 messenger RNA binding protein 1 (IMP1). The contribution of autophagy to resulting in vitro and in vivo phenotypes was evaluated via genetic inactivation of Atg7. Molecular analyses of IMP1 modulation of autophagy at the protein and transcript localization levels were performed using IMP1 mutant studies and single-molecule fluorescent in situ hybridization. RESULTS: Epithelial Imp1 deletion reduced leucine rich repeat containing G protein coupled receptor 5 cell frequency but enhanced both organoid formation efficiency and in vivo regeneration after irradiation. We confirmed prior studies showing increased autophagy with IMP1 deletion. Deletion of Atg7 reversed the enhanced regeneration observed with Imp1 deletion. IMP1 deletion or mutation of IMP1 phosphorylation sites enhanced expression of essential autophagy protein microtubule-associated protein 1 light chain 3ß. Furthermore, immunofluorescence imaging coupled with single-molecule fluorescent in situ hybridization showed IMP1 colocalization with MAP1LC3B transcripts at homeostasis. Stress induction led to decreased colocalization. CONCLUSIONS: Depletion of IMP1 enhances autophagy, which promotes intestinal regeneration via expansion of facultative intestinal stem cells.


Asunto(s)
Mucosa Intestinal , Intestinos , Animales , Ratones , Hibridación Fluorescente in Situ , Mucosa Intestinal/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Madre/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G354-G368, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852920

RESUMEN

Calorie restriction can enhance the regenerative capacity of the injured intestinal epithelium. Among other metabolic changes, calorie restriction can activate the autophagy pathway. Although independent studies have attributed the regenerative benefit of calorie restriction to downregulation of mTORC1, it is not known whether autophagy itself is required for the regenerative benefit of calorie restriction. We used mouse and organoid models with autophagy gene deletion to evaluate the contribution of autophagy to intestinal epithelial regeneration following calorie restriction. In the absence of injury, mice with intestinal epithelial-specific deletion of autophagy gene Atg7 (Atg7ΔIEC) exhibit weight loss and histological changes similar to wild-type mice following calorie restriction. Conversely, calorie-restricted Atg7ΔIEC mice displayed a significant reduction in regenerative crypt foci after irradiation compared with calorie-restricted wild-type mice. Targeted analyses of tissue metabolites in calorie-restricted mice revealed an association between calorie restriction and reduced glycocholic acid (GCA) in wild-type mice but not in Atg7ΔIEC mice. To evaluate whether GCA can directly modulate epithelial stem cell self-renewal, we performed enteroid formation assays with or without GCA. Wild-type enteroids exhibited reduced enteroid formation efficiency in response to GCA treatment, suggesting that reduced availability of GCA during calorie restriction may be one mechanism by which calorie restriction favors epithelial regeneration in a manner dependent upon epithelial autophagy. Taken together, our data support the premise that intestinal epithelial Atg7 is required for the regenerative benefit of calorie restriction, due in part to its role in modulating luminal GCA with direct effects on epithelial stem cell self-renewal.NEW & NOTEWORTHY Calorie restriction is associated with enhanced intestinal regeneration after irradiation, but the requirement of autophagy for this process is not known. Our data support the premise that intestinal epithelial autophagy is required for the regenerative benefit of calorie restriction. We also report that luminal levels of primary bile acid glycocholic acid are modulated by epithelial cell autophagy during calorie restriction with direct effects on epithelial stem cell function.


Asunto(s)
Restricción Calórica , Intestinos , Ratones , Animales , Intestinos/fisiología , Mucosa Intestinal/metabolismo , Células Epiteliales , Autofagia/genética
3.
EMBO Rep ; 23(11): e55209, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36120829

RESUMEN

The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiated cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations. Here, we ask whether specific functional properties predict facultative stem cell activity. We utilize in vivo labeling combined with ex vivo organoid formation assays to evaluate how cell age and autophagic state contribute to facultative stem cell activity within secretory lineages. Strikingly, we find that cell age (time elapsed since cell cycle exit) does not correlate with secretory cell plasticity. Instead, high autophagic vesicle content predicts plasticity and resistance to DNA damaging injury independently of cell lineage. Our findings indicate that autophagic status prior to injury serves as a lineage-agnostic marker for the prospective identification of facultative stem cells.


Asunto(s)
Mucosa Intestinal , Células Madre , Estudios Prospectivos , Células Madre/metabolismo , Linaje de la Célula , Diferenciación Celular/genética
5.
Inflamm Bowel Dis ; 27(2): 256-267, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-32556182

RESUMEN

BACKGROUND: Defining epithelial cell contributions to inflammatory bowel disease (IBD) is essential for the development of much needed therapies for barrier repair. Children with very early onset (VEO)-IBD have more extensive, severe, and refractory disease than older children and adults with IBD and, in some cases, have defective barrier function. We therefore evaluated functional and transcriptomic differences between pediatric IBD (VEO and older onset) and non-IBD epithelium using 3-dimensional, biopsy-derived organoids. METHODS: We measured growth efficiency relative to histopathological and clinical parameters in patient enteroid (ileum) and colonoid (colon) lines. We performed RNA-sequencing on patient colonoids and subsequent flow cytometry after multiple passages to evaluate changes that persisted in culture. RESULTS: Enteroids and colonoids from pediatric patients with IBD exhibited decreased growth associated with histological inflammation compared with non-IBD controls. We observed increased LYZ expression in colonoids from pediatric IBD patients, which has been reported previously in adult patients with IBD. We also observed upregulation of antigen presentation genes HLA-DRB1 and HLA-DRA, which persisted after prolonged passaging in patients with pediatric IBD. CONCLUSIONS: We present the first functional evaluation of enteroids and colonoids from patients with VEO-IBD and older onset pediatric IBD, a subset of which exhibits poor growth. Enhanced, persistent epithelial antigen presentation gene expression in patient colonoids supports the notion that epithelial cell-intrinsic differences may contribute to IBD pathogenesis.


Asunto(s)
Presentación de Antígeno , Enfermedades Inflamatorias del Intestino , Organoides/crecimiento & desarrollo , Niño , Humanos , Inflamación , Enfermedades Inflamatorias del Intestino/genética , Organoides/fisiopatología , Regulación hacia Arriba
6.
EMBO Rep ; 20(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061170

RESUMEN

RNA binding proteins, including IMP1/IGF2BP1, are essential regulators of intestinal development and cancer. Imp1 hypomorphic mice exhibit gastrointestinal growth defects, yet the specific role for IMP1 in colon epithelial repair is unclear. Our prior work revealed that intestinal epithelial cell-specific Imp1 deletion (Imp1ΔIEC ) was associated with better regeneration in mice after irradiation. Here, we report increased IMP1 expression in patients with Crohn's disease and ulcerative colitis. We demonstrate that Imp1ΔIEC mice exhibit enhanced recovery following dextran sodium sulfate (DSS)-mediated colonic injury. Imp1ΔIEC mice exhibit Paneth cell granule changes, increased autophagy flux, and upregulation of Atg5. In silico and biochemical analyses revealed direct binding of IMP1 to MAP1LC3B, ATG3, and ATG5 transcripts. Genetic deletion of essential autophagy gene Atg7 in Imp1ΔIEC mice revealed increased sensitivity of double-mutant mice to colonic injury compared to control or Atg7 single mutant mice, suggesting a compensatory relationship between Imp1 and the autophagy pathway. The present study defines a novel interplay between IMP1 and autophagy, where IMP1 may be transiently induced during damage to modulate colonic epithelial cell responses to damage.


Asunto(s)
Mucosa Intestinal/metabolismo , Proteínas de Unión al ARN/genética , Cicatrización de Heridas/genética , Adulto , Anciano , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Biomarcadores , Estudios de Casos y Controles , Línea Celular , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Mucosa Intestinal/patología , Masculino , Ratones , Persona de Mediana Edad , Células de Paneth/metabolismo , Células de Paneth/patología , Unión Proteica , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Adulto Joven
7.
Genes Dev ; 32(15-16): 1020-1034, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068703

RESUMEN

RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.


Asunto(s)
Carcinogénesis , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulón , Vía de Señalización Wnt , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Mucosa Intestinal/fisiología , Ratones , Ratones Transgénicos , Oncogenes , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , Regeneración , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA